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(collection of mind-maps to the Lecture on QFT)

Introduction, Klein-Gordon fiel(MM)
The Dirac Field(CC)

Perturbation Theory, S-Matrix(MS)

Loop calculations, Dimensional Regularization(OK)

Renormalization(??)

Renormalization Group Equation(GA)
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Peskin-Schroe

2. Klein-Gordon field

2.1 Why QFT
- Particle creation not part of (M
Even helow threshold, virtual states can be created
due 1o Heisenberg uncertainty
- Causaliry violari
arhitrary points in arhitrary short time.
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rLc-rcntz Invariance — 3.1

We label a general Lorentz
transformation by A. We deline
the scalar field to wansform as

¢(z) — ¢'(z) = $(A7'x).

&, (z) — Mgp(A)Pp(Ax).

The Lorentz ransformations A
form a growp. The M{A) are the

must satisfy

(2 JP°] = i{g“P Jme —

\.

We define a vector field to transform as

representations of the Lorentz group.
The matrices forming the representation
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irac Bilinears — 3.4
framsfor mation

propersy af Iy

1 scalar

¢ ul vector

o™ = 1h*, 7] tensor
. e pseudo-vector
o psemdo-scalar
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There are conserved currents
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Chapter 3 — The Dirac Field
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The Dirac algebra defined by
-q bl l- =

allows us to define the following
gencralors

] =
[ L
= ™
we can then wrile the chiral/ Weyl

representation of A for 3+1
space-lme using

i} u 1 ay? = “ ﬂr
T=11 0 “\=-e' 0 )"
The spinor representation of the
Lorentz group is
i

."I.l_ = exp( 2...:,,..5"‘"}
The Dirac equation 18
(" — m)y(z) = 0.
We will generally use

frf a0

‘.Fql"' + ‘r"wl“ = 2™ x 1

mEHRA

U=
since then psibar-psi s a Lorentz scalar]
The Dirac Lagrangian

Lpirac = '-'I"{";'.fﬁﬂn — m}i.

We can wse Weyl spinors (o talk about

uﬂ‘f[ or right handed particles. J

Cable docs not anbar sicl.

/

Raotate 180°.

Y

Grcc-Parliclc Solution = 3.3 h

Dirac equation also satisfies KG
Cquallon S0 use

v{z) = u(p)e™"**

u(py) = v'm (:)

Apply a boost Lo gel

ulp) = vPp ot
o VP GE

With normahzaton condition
fin = 2mé' €.
Spin sums (over g0

Z u*(pla*(p) = v -p+ m.

Y v (pet(p) =-p—m

——

PROVED:
Cables exist in 4-dimensional space.

Cable does nod enber sk,
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Non-

(Qw:mtizh&g Dirac Field — 3.5
The guantzed felds are

P f d‘p |
eI) ——
(2=) /2E,

- ]‘d'p [
gr) 11::1" \_,J_FP

With commutation relations!!! NOT [.,.]
{ap.ag'} = {bp. 031} = (2m)*6P (p - q)6™
The one particle state is defined by

|P: 5 :' — ¥ le'Elﬂﬂ' IU}

We can show the Dirac field s in fact a spin V2
particle by looking at the angular momentum

J= jdar y'*(x x (—iV) + %E)r.

{u;lflp]e Baaim —-"r;‘l"lp_ir -pr}

E[h"r'[_plr T r.l.;h'lpu'" '}

Then on a state we get
J:ag' |0) = +1ag" 0),
The total charge is

@= f{‘?r}*’

The propagator is

J.'10) = 483 0
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Section 4.1
Perturbation Theory

“phi-fourth”
2 ;
L =(3) (8,0))" — ym*¢* - 3¢

QED Lagrangian
Gauge Invariance issues

Renormalizability considerations

Remember that L must have units
of rn?

scalar and vector fields have

units of m spinors have units of 3/2

Renormalizable terms must have
Proper units, but dimensionless
Coupling constants.

Section 4.2
Perturbation Expansion of
Correlation Functions

Difference between the ground
State and the vacuum

Interacting Correlator in the
Hisenberg picture.

The time-evolution operator

The true description of the
Vacuum

The perturbed Correlator in the
Interaction picture.

Section 4.5

Section 4.6

Section 4.3
Wick's Theorem

An “n-point” correlation function
can be rewritten as the sum of
all possibe “contractions” of the
operators sandwiched between
the vaccuum.

Section 4.4
Feynman Diagrams(Not from the
Path Integral)

Wick Theorem Expansion
Of the Scalar n-point function

Power series expansion of the
Expansion

Corresponding diagrams

Position Space Feynman Rules

Momenntum Space Feynman Rules

Vacuum Diagrams and the
Denominator

Scattering Cross-sections

The S-Matrix form Wave Packets

The T-matrix and Scattering
Amplitudes

The S-Matrix from Feynman Diagrams

Expanding the final states of S-Matrix
Representation

Perturbative expansion and Wick's
Theorem

Feynman Rules for Scattering

Section 4.7
Feynman Rules for Fermions




Intro to Dimensional Regularization

Loop Integrals Calculations

Basic Concepts:

Ultraviolet divergences in Feynman diagrams come from the
integration of internal momenta in 4-dim space. We can make
integration finite by lowering the dimensionality of the space-time
[t Hooft and Veltman 1972]

d* d’
|l e
(2m) (2x)
Mow, Feynman integrals are defined as analytic functions of the

space-time dimension d. The ultraviolet divergences manifest
themselves as singularnties as d goes to 4.

Principles and Axioms:
Axiom | (linearity): [ d“qlaf(q)+bglq)l=a [ d’qf(q)+b[ d*qglq
d_fdde{%], s>0

Axiom Il (tr. invar): [ d“qf (q+k)=[d"qf(q)

Axiom Il (scaling): [ d‘qf(q)=

Axiom IV (rot. invar.): fddqq"f{q2]=n
[ daq"q'flq)=g"

Axiom V (Gauss th.): _[d q=— F“{q]:l:l
|,qH

) Jd'q d’i [...]:_fd"! d'q [..]
sl daf(k.q)=] d'q =~ TRAGE

The Master Integral:

__J' d 1

R(d|<R[2a]
:r] [q"—m+i¢]

Can be cajculaled in the Euclidean space by performing the Wick

rotation: - r[u—i] 4

1 [m’ '{1]=f{_1+m] 2 (m*—ig)?
‘ (4 Tla]

)

Feynman Parameters:

'f".,-_, |

BT 24+ (1-2)8]"
. l

l ' . in-1)!

— = f Tz el ,Iﬁ'h_-',—“ - T
.4].4-2'-'.-'1?. _I/ ! g l_'J I_J!J,‘11+J'-_:_.'1.-_':| ".i'.'r,.-'11|
More Integrals:

4
J‘ d q4 _ 1 _ {:I'd'[m2+k2;u]
V' lg—2g-k—m +ic]
4 K ') ')
[A44 &=k [ +K )
V' lg—2g-k—m+ie]
4 2
_r dg q =1'""[m* ;a—11+m 1" [m*; &

x) [g°—2q-k—m'+ie]"

Things to redefine in d-dimentions:
Minkowski metric:  g,.g"" = d

Properties of gamma matrices: | y*,y"|=2g"" = y,y'y'=(2-d]y"

Trace of gamma matrices: rly'y"'l=fld)g"", fld=4) = 4
- d=2
Fermion and Boson fields ([L]=d): [¥]=—— MJ]=M]=T
4—d
E/M and "4 Couplings: fE]=T= [r]=4-d

Following convention is chosen: renormalized couplings have to
stay dimensionless in all dimensions. This can be achieved by

introducing the arbitrary mass scale p, so that
4-d

e,de,u C o, 2 h,ut
PropertiES of I'-function:

d

4—d
E=——

lim I'( -:]—— ye+0l €},

e+

y = 0.5772,

I'[—=n|=(-1)" n! I'[e], n=-1,-2,...




QFT observables are defined on the space of fields, Particles are in constant interaction with this fleld in the same way as electrons in a solid are in constant interaction with the

lons of the grating (real mass vs effective mass). The goal of renormalization Is to account for these interactions by mappling unphysical bare parameters into physlcal
observables. ¢" — theory is used as an example.

1 g 1 A
L= (0,0p)" - Hmbeh - dfﬂ;
Renormalization Momentum power counting (structure of the divergences)
Physical Green's function Is the renormalized Green's function We can limit ourselves with one particle ireducible diagrams (1P} only:
in) g nt2 ["] = include all the possible divergent loops
Gr'(@yoney) =2y "Gy (@, . Tn) rIGWT — ik - simplifies identification of necessary Lagrangian counterterms
L% (24, .00y :1:,.} =2z} 2rfg {:r], N —

D =41, — N - Superficial degree of divergence
L =T =V 41 - Number of independent loops
I - Number of internal lines

V' - Number of vertices

Go from balm to physical parameters:
®p =2y 0p

An = (Z1/Z5)Ar

my = (Z3/Zo)m%

N - Number of external lines
Get the renormalized Lagranglan
L=1(8,0F) - lm} 0% — 40 + Divergent diagrams satisfy:
lExtramlng the counterterms
Y —y n this case we
+5(Za — 1)(8,®F)* - (ZH = 1)mg®% ~ (2, = 1)(Ap/41) 0% - Identify all the divergent subdiagrams in the process

- Replace them with equivalent non-diverging part plus the conterterm

- Repeat the procedure for higher order terms until all the divergencies are
Renormallization conterterms elliminated.

How to construct counterterms such that the divergent contributions coming Possible pitfall: overlaping divergencies
from the first three terms exactly cancel out that counterterms?

. ., Dimensional regularization
What kind of infinities and how many of them do we have in the theory? -Goto d — € dimensions
Do we have enough bare parameters (we need one per infinity)? - Use the Feynman trick to merge the denominator
Taylor expansion of the diverging tems yields renormalization conditions - Apply Wick rotation and calculate the integral £o — if;
V-"’ELL‘EIH fix conterterms: - Isolate the divergent terms

IJI =Ap The number of the equations
H ! f(l}@n ey = 1 must be equal to the number Weinberg Theorem:

+ : = Of renormeaaation oonstants Feynman integral converges if the degree of divergence of the diagram as well as the
EF( )lﬁ'""lﬁ-- =0 degree of divergence associated with each possible subintegration over loap
How unique is the regularization procedura? momenta is negative.

Axjoms of renormalization:

"...once we have specified the counterterms, which cancel the infinities,
we can make a finite changes in them" (renormalization group) - Physical theories are renormalizable theories (?)

- Bare (unrenormalized) parameters of the theory are not observable

- The resulting observable parameters are independant of renormalization scheme
(renormalization Ernup}




d*o

do dm:t:E
dyldv o' E

Observed dependence only by x Bjorken

Parton Model: If Q"2 is high, | am scattering with a point-like constituent carrying x

_o (E ey
dldE' F (E)J .‘!ﬂf}-‘*l.-i-e;c-i-raﬁicTensor

e YL
[“"’2“‘2 (E) + 2W; sin (i)] The structure functions depend by two variables

Unknown

Dis
& y Scattering

at high Clz X
P

fraction of the total momentum of the proton (in collinear approximation). P

The QCD at high energy describes free particles

Two renormalisation scheme: R, R’ :

Theoretically

Different Renormalisation Schemes (MS, etc.)

n The physical quantities cannot depend by the renormalisation scheme

Counter terms in the Lagrangian
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The renormalisation group

rm = Z(R;, R]rn

Group multiplication law  Z(R", R")Z(R', R) = Z(R", R) ; Mdentity: Z(R,R)=1

le=Z(RITy Tp =Z(Ry Z(R', Ry= Z(RVZ(R)
r(n)(p‘_ 0, mD) = z—ﬂ;'zl-(n)(Pl_. g.m, “) dimensionless derivative 0 - ___rp{)l,'l = ( _ja__z—n_-'Z) [qn)_'_z—u_u'z( irm)) _d__ o= __a_ + ﬁﬁi a_m_i_
¢ .renorrnalised at point p uld/dp). w ° uﬂ'# ¢ : #aﬂ- dp e dp Hg aj am
£ ;
E| p@ = .ua—g (1 8 a 3\ o
3 - The vertex function changes, as function of the normalisation point such as: ﬂ*aI +ﬁ(g)£ —ny(g) +me(3)§; ™ (pi,g,m u)=0
- ]
E y(g) = KE}—LIDEJZo 1
= am 1] Integrated and T d: & ') = glia) ~
"E mym(g) = "’3_u [1] Integrated and Taylor expand: £ 1~ (m — Dbg(ieoy" log (e /t0)
=]
1]
= a scale of momentum Py — €' pi = Apy
a 3 n H I "
(“ E + ﬂ(S)E +[D+ "?‘(8)]) T i('.‘1(5'-% g=0 We can solve it I'(Ap;, g)=T{p;, Zlexp (f dg'%‘:,—;) By introducing a running coupling n:l:nrnstant:‘:l’—g%2 = B(F)
2
This dimension of the vertex function, from Lorentz invariance.
QED
Tayl i d a fixed poi ) = i)
{ f'(gr) < 0: Ultraviolet stable aylor exgansmn around a fixed point 1 - (e2(10)/67 ) log ﬁ
, B=p—g=(g—gr)B'r)+-
B'(gF) > 0: Infrared stable A small &
(u) = £olio)
B T 071677 g0li) log (e /12a)

Asymptotic Freedom

Giovanni Angelini

2
_Cn - =0 )]+"' ﬁ -
o 3 ! Solving for B ﬁ =

g _ g
du | lex?

1 4
-j-C..d - 5(’.‘;

Asymptotic freedom

The renormalisation group - min
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