HADRON RESONANCES

MAXIM MAI

UNIVERSITY OF BERN (MAIN) THE GEORGE WASHINGTON UNIVERSITY

Heisenberg-Programm TRR110: NSFC Grant No. 12070131001, DFG Project-ID 196253076 DOE: DE-SC0016582, DE-AC05-06OR23177, DE-FG02-95ER40907 DFG: Heisenberg Programme (project number: 532635001) NSF: PHY-2012289

Seminar@ TSINGHUA Beijing 29.09.2024

BIG PICTURE

Protons/neutrons

- 99% of the mass of visible matter in the universe
- Building blocks: quarks & gluons (strong force)
- Part of a large class of particles: hadrons

what are those?

HADRON SPECTRUM

Many/mostly excited states

Review: MM/Meißner/Urbach Phys.Rept. 1001 (2023) 1-66

≈ 150 mesons

≈ 50 baryons (****)

Unflavoured mesons @ PDG 2023

HADRON SPECTRUM

"If I could remember the names of all these particles, I would have been a botanist."

Enrico Fermi

N Baryons @ PDG/2023

Many/mostly excited states

Review: MM/Meißner/Urbach Phys.Rept. 1001 (2023) 1-66

≈ 150 mesons

 \approx 50 baryons (****)

HADRON SPECTRUM

"If I could remember the names of all these particles, I would have been a botanist."

Enrico Fermi

Many/mostly excited states

Review: MM/Meißner/Urbach Phys.Rept. 1001 (2023) 1-66

≈ 150 mesons

 \approx 50 baryons (****)

HADRON SPECTRUM

"If I could remember the names of all these particles, I would have been a botanist."

Enrico Fermi

THEORETICAL APPROACHES

Excited hadrons (double trouble)

- Non-perturbative regime of QCD
- Non-perturbative phenomena

[1] Review: Eichmann/Sanchis-Alepuz/Alkofer/Fischer Prog.Part.Nucl.Phys. 91 (2016) 1-100

[2] Review: MM/Meißner/Urbach Phys.Rept. 1001 (2023) 1-6

[3] Review: Chen/Chen/Liu/Liu/Zhu Rept.Prog.Phys. 86 (2023) 2

[4] Review: Döring/Haidenbauer/Sato/MM PPNP in progress

Maxim Mai 7
QCD
al 5[1]
tion
S
ENT

STRANGENESS PHYSICS

Testing the limits of Effective field theories Lattice QCD

REVIEW: MM, Eur.Phys.J.ST 230 (2021) 6, 1593-1607

Test of our understanding of QCD

• *KNN* & *KNNN* bound states

Review by Gal/Hungerford/Millener (2016);

• K^- in medium

Mareš et al. Acta Phys. Polon. B 51, 129 (2020); Hrtánkova et al. Phys.Lett. B 785, 90 (2018)

\rightarrow K⁻-condensate can change NS EoS

Femtoscopy/Correlations

Michael Annan Lisa et al, Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402 L. Fabbietti et al., ARNPS 71 (2021), 377-402

OVERARCHING IMPACT

Fig.: Rafaelle Del Grande

Pal et al., Nucl. Phys. A 674, 553 (2000)

"There is a large experimental program on production of S particles by nuclear collisions and by photons, scattering, and interactions of those mesons with nuclei, etc. But just between us theoretical physicists: What do we do with all these data? We can't do anything. ..."

R. P. FEYNMAN

EXPERIMENT & THEORY

1960 Dalitz/Tuan

1959 Dalitz/Tuan

.... LNL 1960s

Directly from QCD? (double trouble)

- small relative momenta
- non-perturbative energy regime

Maybe Effective field theory of QCD?

EXCITED HADRONS AND QCD

 $\begin{aligned} \mathcal{J} &= \frac{1}{4g^2} \left(\mathcal{G}_{\mu\nu}^{\alpha} \mathcal{G}_{\mu\nu}^{\alpha} + \frac{1}{2g^2} \overline{g}_{i} \left(i\partial^{\mu} \mathcal{D}_{\mu} + m_{j} \right) q_{j} \right) \\ & \text{where } \mathcal{G}_{\mu\nu}^{\alpha} &= \partial_{\mu} \mathcal{F}_{\nu}^{\alpha} - \partial_{\nu} \mathcal{F}_{\mu}^{\alpha} + i f_{be}^{\alpha} \mathcal{F}_{\mu}^{b} \mathcal{F}_{\nu}^{c} \\ & \text{and } \mathcal{D}_{\mu} &= \partial_{\mu} + i t^{\alpha} \mathcal{F}_{\mu}^{\alpha} \\ & That's \ it ! \end{aligned}$

http://frankwilczek.com/Wilczek_Easy_Pieces/298_QCD_Made_Simple.pdf

Maybe Effective field theory of QCD?

- Effective/Hadronic degrees of freedom
- Low-energy strong interactions
- Benchmark for many scenarios

Weinberg (1979) Gasser, Leutwyler (1981)

Reviews:

- V. Bernard and U.-G. Meißner, Ann. Rev. Nucl. Part. Sci. 57, 33 (2007), arXiv:hep-ph/0611231.119
- V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008), arXiv:0706.0312 [hep-ph]
- S. Scherer, Adv. Nucl. Phys. 27, 277 (2003), arXiv:hep-ph/0210398

$$\begin{aligned} \mathscr{L}_{\phi B} &= \left\langle \bar{B} \left(i \gamma_{\mu} D^{\mu} - m \right) B \right\rangle + \frac{D}{2} \left\langle \bar{B} \gamma_{\mu} \gamma_{5} \left\{ u^{\mu}, B \right\} \right\rangle + \frac{F}{2} \left\langle \bar{B} \gamma_{\mu} \gamma_{5} \left[u^{\mu}, B \right] \right\rangle \\ &+ b_{1} \left\langle \bar{B} \left[u_{\mu}, \left[u^{\mu}, B \right] \right] \right\rangle + \dots \\ &+ d_{4} \left\langle \bar{B} \epsilon^{\mu \nu \rho \tau} \gamma^{\tau} \left[\left[u^{\mu}, u^{\nu} \right], \left[u^{\rho}, B \right] \right] \right\rangle + \dots \\ &\dots \end{aligned}$$

where

$$D_{\mu} = \partial_{\mu} + \frac{1}{2} [u^{\dagger}, \partial_{\mu} u] \quad u = e^{i\phi/(2F)} \quad u^{\mu} := iu^{\dagger} \partial^{\mu} u - iu \partial^{\mu} u^{\dagger}$$

$$\chi_{\pm} := u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u \quad \chi := 2B(s - ip)$$
meson/baryon fields:

$$\phi = \sqrt{2} \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta \end{pmatrix} \quad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \bar{\Xi}^{0} & -\frac{2}{\sqrt{6}} \end{pmatrix}$$

Weinberg, Gasser, Leutwyler, Bernard, Tang, Ellis, Bernard, Meißner,...

LOW-ENERGY EFT@QCD

CHPT = EFT of QCD

Weinberg (1979) Gasser, Leutwyler (1981)

Reviews:

V. Bernard and U.-G. Meißner, Ann. Rev. Nucl. Part. Sci. 57, 33 (2007), arXiv:hep-ph/0611231.119 V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008), arXiv:0706.0312 [hep-ph] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003), arXiv:hep-ph/0210398

For hadron (strangeness) resonances it fails (perturbatively)!

Review: MM, Eur.Phys.J.ST 230 (2021) 6, 1593-1607

- Kaon mass is large → convergence
- Resonance just below KN threshold \rightarrow non-perturbative effect

LOW-ENERGY EFT@QCD

CHPT = EFT of QCD

Weinberg (1979) Gasser, Leutwyler (1981)

Reviews:

V. Bernard and U.-G. Meißner, Ann. Rev. Nucl. Part. Sci. 57, 33 (2007), arXiv:hep-ph/0611231.119 V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008), arXiv:0706.0312 [hep-ph] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003), arXiv:hep-ph/0210398

For hadron (strangeness) resonances it fails (perturbatively)!

Review: MM, Eur.Phys.J.ST 230 (2021) 6, 1593-1607

- Kaon mass is large → convergence
- Resonance just below KN threshold \rightarrow non-perturbative effect

$$a_{\bar{K}N}^{I=0} = \left((+0.53)_{\rm LO} + (+0.97)_{\rm LO} \right)$$
$$a_{\bar{K}N}^{I=1} = \left((+0.20)_{\rm LO} + (+0.22)_{\rm LO} \right)$$

$_{\rm NLO} + (-0.40 + 0.22i)_{\rm NNLO} +)$	fm
$_{ m NLO} + (-0.26 + 0.18i)_{ m NNLO} +)$	fm

LOW-ENERGY EFT@QCD

CHPT = EFT of QCD

Weinberg (1979) Gasser, Leutwyler (1981)

Reviews:

V. Bernard and U.-G. Meißner, Ann. Rev. Nucl. Part. Sci. 57, 33 (2007), arXiv:hep-ph/0611231.119 V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008), arXiv:0706.0312 [hep-ph] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003), arXiv:hep-ph/0210398

• For hadron (strangeness) resonances it fails (perturbatively)!

Review: MM, Eur.Phys.J.ST 230 (2021) 6, 1593-1607

- Kaon mass is large → convergence
- Resonance just below \overline{KN} threshold \rightarrow non-perturbative effect

$$a_{\bar{K}N}^{I=0} = \left((+0.53)_{\rm LO} + (+0.97)_{\rm LO} + (+0.97)_{\rm LO} \right)$$
$$a_{\bar{K}N}^{I=1} = \left((+0.20)_{\rm LO} + (+0.22)_{\rm LO} \right)$$

• Extension to higher energies, unitarity restoration — Chiral Unitary Approach (UCHPT)

Weise/Kaiser/Meißner/Lutz/Oset/Oller/Ramos/Hyodo/Borasoy/MM/Bruns/...

CHIRAL UNITARY APPROACH

Good

- Non-perturbative scheme
- Record complex pole-positions (II Riemann Sheet)
- Often works: $N(1535), N(1650), \Lambda(1405), \Lambda(1380), \ldots$

Kaiser/Siegel/Weise Phys.Lett.B 362 (1995) Lutz/Soyeur Nucl.Phys.A 773 (2006); MM et al. Phys.Lett.B 697 (2011); ...

Attention

- Renormalisation/Crossing symmetry/Power counting only perturbatively
- Choice of interaction kernel MM et al. Phys.Lett.B 697 (2011); ...

"There is a large experimental program on production of S **particles** by nuclear collisions and by photons, scattering, and interactions of those mesons with nuclei, etc. But just between us theoretical physicists: What do we do with all these data? We can't do anything. ..."

R. P. FEYNMAN

EXPERIMENT & THEORY

1960 Dalitz/Tuan

1959 Dalitz/Tuan

.... LNL 1960s

THE ENIGMA OF THE $\Lambda(1405)$

"There is a **large experimental program on production particles** by nuclear collisions and by photons, scattering interactions of those mesons with nuclei, etc. But just betw us theoretical physicists: **What do we do with all these d We can't do anything**

R. P. FEYN

	NNLO UCHPT	2023 Bulava et al. [LQCD] 2022 Sadasivan et al. 2022 Lu et al.	Klong 20xx SIDDHARTA2 2024	Kaon bear Kaonic De
		2019 Anisovich et al. 2018 Bayar et al. 2018 Revai et al. 2018 Sadasiyan et al	AMADEUS 2022 AMADEUS 2018	K- absorp
n of S	Lattice QCD	2016 Cieply et al. 2015 Hall et al. (LQCD) 2014 Mai/Meißner	CLAS 2015 HADES 2013	in-flight ca
ween	Production amplitudes	2013 Roca/Oset 2013 Guo/Oller 2012 Mai/Meißner 2012 Ikeda/Hyodo/Weise	SIDDHARTA 2011	Photoproc
g"		2001 Lutz, Kolomeitsev 2001 Oller/Meißner	COSY 2008	pp collisic Kaonic Hy
MAN	UCHPT Baryon ChPT	1997 Lutz 1995 Kaiser et al. 1985 Veitand et al.		
	ChPT	1978 Isgur Karl	Hemingway 1985	ţ
	Quark mode		Rutherford Lab 1980s	
	HE STATE	1950 Dalitz/Tuan 1959 Dalitz/Tuan	LNL 1960s	Bubb

THE ENIGMA OF THE $\Lambda(1405)$

Long history of experimental and theoretical eff

- Sub-($\bar{K}N$)-threshold $\Lambda(1405)$ resonance
- second state $\Lambda(1380)$ predicted from UCHPT
- no direct experimental verification
- confirmed by many critical tests & LQCD

	NNLO UCHPT	2023 Bulava et al. [LQCD] 2022 Sadasivan et al. 2022 Lu et al.	Klong 20xx SIDDHARTA2 2024	Kaon bear Kaonic De
		2019 Anisovich et al. 2018 Bayar et al. 2018 Revai et al. 2018 Sedesiven et al.	AMADEUS 2022	K- absorp
forts	Lattice QCD	2016 Cieply et al. 2015 Hall et al. (LQCD) 2014 Mai/Maißpor	CLAS 2015	in-flight c
	Production amplitudes	2014 Mai/Weißner 2013 Roca/Oset 2013 Guo/Oller 2012 Mai/Meißner 2012 Ikeda/Hyodo/Weise		Photoproc
		2001 Lutz, Kolomeitsev 2001 Oller/Meißner	SIDDHARTA 2011 COSY 2008	pp collisio Kaonic Hy
	UCHPT Barvon ChP1	1998 Oset/Ramos 1997 Lutz 1995 Kaiser et al		60
	ChPT	1985 Veitand et al.		
	Ouark mode	1978 Isgur Karl	Hemingway 1985	Z
			Rutherford Lab 1980s	N Sedar
	THE	1960 Dalitz/Tuan 1959 Dalitz/Tuan	LNL 1960s	Bubb

CURRENT STATUS OF THE $\Lambda(1405)$

UCHPT w/o SIDDHARTA

- Oller:2000fj
- o Oset:2001cn
- Jido:2003cb
- Borasoy:2005ie
- △ Roca:2013av(1)
- Roca:2013av(2)
- Morimatsu:2019wvk(B)
- Morimatsu:2019wvk(C)

PM

- Cieply:2011nq
- Shevchenko:2011ce
- Shevchenko:2011ce
- ▲ Hassanvand:2012dn
- Revai:2019ipq

@ Maxim Mai 08/2024

CHPT encodes quark mass dependence

• SU(3) limit provides a simpler resonance structure

Jido et al. Nucl.Phys.A 725 (2003); Garcia-Recio/Lutz/Nieves Phys.Lett.B 582 (2004) 49-54;

\rightarrow 1 singlet + 2 octet poles

→ LO/NLO "tracks" differ

Guo/Kamyia/MM/Meißner Phys.Lett.B 846 (2023)

• Resonance \leftrightarrow virtual bound state \leftrightarrow bound state

(?) Lattice QCD

UNPHYSICAL QUARK MASSES

LATTICE HADRON SPECTROSCOPY

Numerical evaluation of QCD Green's functions

Euclidean discretised (UV) space-time, finite volume (IR)

Experimentally inaccessible scenarios:

- → Unconventional quantum numbers
- → Three-body scattering

. . .

→ Unphysical pion mass (chiral trajectories)

 $\begin{aligned} \mathcal{J} &= \frac{1}{4q^2} \left(\mathcal{G}_{\mu\nu}^{\alpha} \mathcal{G}_{\mu\nu}^{\alpha} + \sum_{j} \overline{g}_{j} \left(i\partial^{\mu} \mathcal{D}_{\mu} + m_{j} \right) q_{j} \right) \\ & \text{where } \mathcal{G}_{\mu\nu}^{\alpha} &= \partial_{\mu} \mathcal{P}_{\nu}^{\alpha} - \partial_{\nu} \mathcal{P}_{\mu}^{\alpha} + i f_{b\alpha}^{\alpha} \mathcal{P}_{\mu}^{b} \mathcal{P}_{\nu}^{c} \\ & \text{and } \mathcal{D}_{\mu} &= \partial_{\mu} + i t^{\alpha} \mathcal{P}_{\mu}^{\alpha} \end{aligned}$ That's it!

http://frankwilczek.com/Wilczek_Easy_Pieces/ 298_QCD_Made_Simple.pdf

LATTICE HADRON SPECTROSCOPY

MM/Culver/Brett/Alexandru/Döring/Lee Phys.Rev.D 100 (2019)

CHPT encodes quark mass dependence

- Available Lattice spectrum [BaSc] Bulava et al. Phys.Rev.Lett. 132 (2024) 5; 2307.13471
 - $M_{\pi} \approx 200 \,\mathrm{MeV} \,M_{K} \approx 487 \,\mathrm{MeV}$
 - $M_{\pi}L = 4.181(16)$ a = 0.0633(4)(6) fm

UNPHYSICAL QUARK MASSES

UNPHYSICAL QUARK MASSES

CHPT encodes quark mass dependence

• Available Lattice spectrum [BaSc] Bulava et al. Phys.Rev.Lett. 132 (2024) 5; 2307.13471

 $M_{\pi} \approx 200 \,\mathrm{MeV} \,M_{K} \approx 487 \,\mathrm{MeV}$

 $M_{\pi}L = 4.181(16)$ a = 0.0633(4)(6) fm

Compare to prediction of UHPT

Guo/Kamyia/MM/Meißner Phys.Lett.B 846 (2023)

- mostly ok but not always
- possible disagreement between old K^-p data and LQCD
- >> experiment/theory update needed.

ELECTROPRODUCTION

Probing the structure of resonances

PHOTON-INDUCED EXCITATION

Nature of states

- Momentum transfer dependence $Q^2 = -q_0^2 + |\vec{q}|^2$
- Compositeness(?)
- **Experimental accessibility**
- Large amount of data ($\sim 10^5$)
- more data coming up from, e.g., JLab $Q^2 = 5 - 12 \,\text{GeV}^2$

Carman, Joo, Mokeev, Few Body Syst. 61, 29 (2020) ... ; [CLAS] Phys.Rev.C 105 (2022) 065201; ...

KINEMATICAL VARIABLES

Five kinematical variables (3*(2+3)-10=5)

- 1. total energy: W
- 2. photon virtuality: Q^2
- 3. transverse photon polarisation:

 $\epsilon = 1 + 2\frac{q_L^2}{Q^2}\tan^2\frac{\theta_e}{2}$

4. production angles: θ, ϕ

Helicity amplitudes

CGLN amplitudes

Multipoles

Chew et al. Phys.Rev. 106 (1957); Dennery Phys.Rev. 124 (1961); Berends et al. Nucl.Phys.B 4 (1967); ... (for explicit formulas) MM et al. Phys.Rev.C 103 (2021)

MULTIPOLES – OBSERVABLES

$$\frac{d\sigma^{\nu}}{d\Omega} (W, Q^{2}, \epsilon, \theta, \phi) = \sigma_{T} + \epsilon \sigma_{L} + \sqrt{2\epsilon(1+\epsilon)}\sigma_{LT}\cos\phi + .$$

$$\downarrow$$

$$W, Q^{2}, \theta) = k/q_{\gamma} \left(|H_{1}|^{2} + |H_{2}|^{2} + |H_{3}|^{2} + |H_{4}|^{2} \right)/2, ...$$

$$\downarrow$$

$$H_{1} (W, Q^{2}, \theta) = \sin\theta\cos\theta/2(-\mathcal{F}_{3} - \mathcal{F}_{4})/\sqrt{2}, ...$$

$$\downarrow$$

$$(W, Q^{2}, \theta) = \sum_{\ell \geq 0} \ell M_{\ell+}(W, Q^{2})P'_{\ell+1}(\cos\theta) + ...$$

$$\downarrow$$

$$\{E_{\ell\pm}(W, Q^{2}), L_{\ell\pm}(W, Q^{2}), M_{\ell\pm}(W, Q^{2})\}$$

JULICH-BONN WASHINGTON

- Gauge invariance (CGLN constraints) Chew et al. Phys.Rev. 106 (1957); Dennery Phys.Rev. 124 (1961); Berends et al. Nucl.Phys.B 4 (1967);
- Siegert's theorem low wavelength limit A. J. F. Siegert, Phys. Rev. 52, 787 (1937) L. Tiator, Few Body Syst. 57, 1087 (2016).
- Photon virtuality dependence

•

MM, M. Döring, C. Granados, H. Haberzettl, Ulf-G. Meißner, D. Rönchen, I. Strakovsky, R. Workman Published in: Phys.Rev.C 103 (2021) 6, 065204 e-Print: 2104.07312 [nucl-th] D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, and K. Nakayama, Eur. Phys. J. A 50, 101 (2014), [Erratum: Eur.Phys.J.A 51, 63 (2015)], arXiv:1401.0634 [nucl-th].

Lippmann-Schwinger equation **Final-state unitarity**

Coupled channel dynamics

• Phenomenological Lagrangians $N^{*}(1520) + ...$ Meson/Baryon exchange parametrisation

Experimental data

- $1.13 < W/GeV < 1.80, Q^2/GeV^2 < 8$
- ~110k data points
- ~ 90 observable types

Parametrization

- S/P/D/F waves ~500 parameters
- DOF~109k (is this good?)

DATA VALIDATION

□ DTL ♦ DTLP △ DTT ▼ KD1 ● PY $\gamma^* p \to \pi^0 p$

Experimental data

- $1.13 < W/GeV < 1.80, Q^2/GeV^2 < 8$
- ~110k data points
- ~ 90 observable types

Parametrisation dependence due to incomplete data

- even for a truncated complete electroproduction experiment L. Tiator, R. L. Workman, Y. Wunderlich, and H. Haberzettl, Phys. Rev. C 96, 025210 (2017), arXiv:1702.08375 [nucl-th].
- in future: Bias-variance tradeoff with statistical criteria J. Landay, MM, M. Doring, H. Haberzettl, and K. Nakayama, Phys. Rev. D 99, 016001 (2019) arXiv:1810.00075 [nucl-th].

DATA VALIDATION

□ DTL ◇ DTLP △ DTT ▼ KD1 ● PY $\gamma^* p \to \pi^0 p$

DATA DESCRIPTION/FITS

$\pi N/\eta N^{2}$	π	N/	ŋ	N	[2]	
--------------------	-------	----	---	---	-----	--

π	NI		
111	N	5	E

Fit	$\chi^2_{ m dof}$
\mathfrak{F}_1	1.77
\mathfrak{F}_2	1.69
\mathfrak{F}_3	1.81
\mathfrak{F}_4	1.78
\mathfrak{F}_5	1.81
\mathfrak{F}_6	1.78

	$\chi^2/{ m dof}$
${\mathfrak F}_1^{ m reg}$	1.66
${\mathfrak F}_1^{ m reg}$	1.73
$\mathfrak{F}_1^{\mathrm{reg}}$	1.69
${\mathfrak F}_1^{ m reg}$	1.69
$\mathfrak{F}_1^{\mathrm{wt}}$	1.54
$\mathfrak{F}_1^{\mathrm{wt}}$	1.63
$\mathfrak{F}_1^{\mathrm{wt}}$	1.58
${\mathfrak F}_1^{\mathrm{wt}}$	1.58

πN , ηN , $K \Lambda$ ^[3]		
	$\ \chi^2_{ m dof}$	
\mathbf{FIT}_1	1.42	
\mathbf{FIT}_2	1.35	
	$\chi^2_{ m wt,dof}$	
\mathbf{FIT}_3	1.12	
\mathbf{FIT}_4	1.06	
	11	

[1] Phys.Rev.C 103 (2021) 6

[2] Phys.Rev.C 106 (2022) 1 [3] Eur.Phys.J.A 59 (2023) 12

Uncertainties:

• systematical: due to different fitting strategies studied

statistical: need more data base cleaning, model • selection...

INTERPOLATOR OR EXTRAPOLATOR

[1] MODEL: [JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201 [2] DATA: Joo et al. [CLAS] PRC (2003), PRL (2002)

INTERPOLATOR OR EXTRAPOLATOR

[1] MODEL: [JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201 [2] DATA: Joo et al. [CLAS] PRC (2003), PRL (2002) https://jbw.phys.gwu.edu/

NEW L-SENSITIVE DATA

Beam-recoil transferred polarisation^[1]

- compare to our prediction (no fit) for integrated kinematics
 - ► large drop-off in Q² due to L-multipoles
 - → fits to new data^[2] will be instrumental

W/GeV

Photo-production datum form the fitted data base

Maxim Mai

Hadron structure probe^[1]

 transition between excited and ground state baryons^[2]

$$H_h^{l\pm,I}(Q^2) = C_I \sqrt{rac{p_{\pi N}}{\omega_0}} rac{2\pi (2J+1)z_p}{m_N \widetilde{R}^{l\pm,I}} \widetilde{\mathcal{H}}_h^{l\pm,I}(Q^2) \,,$$

- 12 N/Δ states are determined
- Charge distribution in light front RF^[3]

$$\rho_0^{NN^*}(\vec{b}) = \int_0^\infty \frac{dQ}{2\pi} Q J_0(bQ) F_1^{NN^*}(Q^2),$$

[1] Aznauryan and V. D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012), arXiv:1109.1720 [hep-ph]; G. Ramalho and M. T. Peña, Prog. Part. Nucl. Phys. 136, 104097 (2024), arXiv:2306.13900 [hep-ph]. [2] Workman, L. Tiator, and A. Sarantsev, Phys. Rev. C 87, 068201 (2013), arXiv:1304.4029 [nucl-th]. [3] Tiator et al. CPC(HEP & NP), 2009, 33(X)

TRANSITION FORM FACTORS

Synergetic approach to hadron spectrum

Lattice QCD: ab-initio QCD calculations + Effective field theories: quark-mass dependence, symmetries

Photon probe (CLAS/GlueX experiments)

- Transition form factors of resonances
- Charge distribution of excited states (POLE)

+ S-matrix : 3-body Quantization condition

-0.03

-0.04

