PION PHOTOPRODUCTION

in a gauge-invariant chiral unitary framework

Maxim Mai

BARYON RESONANCES

- A huge effort is made to unravel the spectrum and properties of baryons at ELSA, CEBAF and MAMI in photoproduction experiments
- Theoretically interesting:
 - some low-lying resonances like $N^*(1440)1/2^+$, $N^*(1535)1/2^-$ or $\Lambda(1405)1/2^-$ do not fit into simple quark constituent model
 - can be generated via strong coupled-channel dynamics:
 - K-matrix (SAID, Bonn-Gatchina)
 - dynamical models (Jülich model)
 - ...
 - chiral unitary approach

CHIRAL UNITARY APPROACH

• ChPT - model independent framework to analyse hadronic processes at low energies

Gasser, Leutwyler (1984)

• LO+NLO chiral potential (local terms):

$$\begin{split} V(\phi(q_1)B(p_1) \to \phi(q_2)B(p_2)) &= A_{WT}(q_1 + q_2) + A_M + A_{14}(q_1 \cdot q_2) \\ &+ A_{57}[q_1', q_2'] + A_{811} \left(q_2'(q_1 \cdot p) + q_1'(q_2 \cdot p)\right) \end{split}$$

- strictly perturbative calculation yields a decent description in the (sub)threshold region
- in vicinity of resonances **resummation** is required

CHIRAL UNITARY APPROACH

• Bethe–Salpeter equation:

$$\mathbf{T}(\mathbf{x}_{2},\mathbf{x}_{1};p) = V(\mathbf{x}_{2},\mathbf{x}_{1};p) + \int \!\! \frac{d^{d}k}{(2\pi)^{d}} V(\mathbf{x}_{2},\mathbf{x};p) \frac{1}{k^{2} - M^{2} + i\epsilon} \frac{i}{\mathbf{x} - \mathbf{x} - \mathbf{x} + i\epsilon} \frac{i}{\mathbf{x} - \mathbf{x} - \mathbf{x} + i\epsilon} \mathbf{x} - \mathbf{x} -$$

- dim. regularized one-loop diagrams
- scale dependence remains

free parameters: $\begin{cases} 3 \text{ subtraction constants: } \log(\mu_{KN}), \log(\mu_{\pi\Sigma}), \log(\mu_{\pi\Lambda}) \\ 14 \text{ low-energy constants: } b_0, b_D, b_F, b_1, ..., b_{11} \end{cases}$

EXPERIMENTAL INPUT

• πN scattering via PWA by SAID Workman et al. (2012)

- $\Re(S_{11})$ and $\Im(S_{11})$ for $W_{\rm cms} < 1560$ MeV
- $\Re(S_{31})$ and $\Im(S_{31})$ for $W_{\rm cms} < 1560$ MeV
- differential cross section of $\pi^- p \to \eta n$ Prakhov et al. (2005)

PHOTON COUPLING

- Dynamically generated $N^{\star}(1535)$ and $N^{\star}(1650)$
- Natural way to construct a photoproduction amplitude incorporating **gauge invariance**:

Antwerpen, Afnan (1995) Borasoy et al.
 $\left(2005\right)$

ii) photon coupling

PHOTON COUPLING

- Unitarity (subspace of meson-baryon states) and gauge invariance fulfilled automatically
- Two new parameters, i.e. b_{12} and b_{13} $\Rightarrow \chi PT$ calculation on magnetic moments (p, n): $b_{12} = 0.095 \pm 0.015, b_{13} = 0.32 \pm 0.06 \text{ GeV}^{-1}$

Kubis, Meißner (2001)

• Parameter-free prediction of photo multipoles (s-wave)

PREDICTION I

• $E_{0+}^{\eta N}$ compared to ETAMAID and Bonn-Gatchina Chiang et al. (2002) Anisovich et al. (2010)

PREDICTION II

• $E_{0+}^{\pi N}(S_{11})$ compared to SAID and MAID2007 Workman et al. (2012) Drechsel et al. (2007)

SUMMARY

DONE

- Solution of (full off-shell) BSE with NLO chiral potential is constructed
- ... and fitted to experimental (phenomenological) data \Rightarrow dynamically generated states: $N^*(1535)$ and $N^*(1650)$
- A (naturally) gauge-invariant photoproduction amplitude is constructed

 \Rightarrow predicted $E_{0+}^{\pi N}(S_{11})$ agrees nicely with phenomenology

TO DO

- Redo the analysis for the eta photoproduction off neutron
- Inclusion of Born graphs into hadronic part

SPARES (renormalization)

• Loop integration \longrightarrow UV-divergencies:

- strict chiral expansion counterterm renormalization
- iterated bubble sum ∞ many counterterms
- shift loop divergencies into the kernel:

$$T \hat{\sim} \frac{1}{V^{-1} - G} \quad \xrightarrow{\text{loop modification}} \quad T_{\delta} \hat{\sim} \frac{1}{V_{\delta}^{-1} - G_{\delta}}$$

Borasoy et al. (2007)

- technically:
 - i) dim-reg. one-loop diagrams
 - ii) omit loop divergencies
 - *iii*) scale dependence remains

SPARES $(\sigma_{\eta N})$

SPARES (NEW FIT)

SPARES (HIGHER ENERGIES)

