# THEORY OF STRANGE **MESONS AND BARYONS**



## **MAXIM MAI**



DOE DE-SC0016582/3, DFG CRC 110

University of Bonn | The George Washington University



PAW'24, CERN, March 2024

# HADRON SPECTRUM – EXPERIMENT

Mostly excited states<sup>[1]</sup>  $\approx 100$  mesons

intermediate energy regime

many overlapping (unflavoured) states

clearer picture through strangeness mesons (?)

key questions

"what is the pattern of these states?"









### Many theoretical approaches

- varying degree of rigour (#QCD)
- varying ability of data description (#Experiment)
- birds vs. frogs





Maxim Mai —

| on                   |
|----------------------|
|                      |
| ENT                  |
| <b>3</b><br>PAW 2024 |

### This talk

- universal parameters of resonances
- from QCD to experiment and back
- cross-channel studies







Maxim Mai —

| on                       |
|--------------------------|
|                          |
| INT                      |
| - I I I<br>4<br>PAW 2024 |
|                          |



#### **MM** *Eur.Phys.J.ST* 230 (2021) 6, 1593-1607

- J.-X. Lu, L.-S. Geng, MM, M.Döring [Phys.Rev.Lett. 130 (2023) 7]
- F-K Guo, Y. Kamyia, MM, Ulf-G. Meißner [Phys.Lett.B 846 (2023) 138264]
- D. Sadasivan et al. *Front.Phys.* 11 (2023) 1139236
- Pittler/MM, Vonk/MM in progress

# $\Lambda(1405) - A CURIOUS CASE OF A$ STRANGENESS RESONANCE



# STRANGENESS PROGRAMM

"There is a **large experimental program on production of S particles** by nuclear collisions and by photons, scattering, and interactions of those mesons with nuclei, etc. But just between us theoretical physicists: **What do we do with all these data? We can't do anything. ...**" *R. P. FEYNMAN* 

THEORY

1960 Dalitz/Tuan

1959 Dalitz/Tuan

LNL 1960s







# STRANGENESS PROGRAMM

"There is a **large experimental program on production of S particles** by nuclear collisions and by photons, scattering, and interactions of those mesons with nuclei, etc. But just between us theoretical physicists: **What do we do with all these data? We can't do anything. ...**" *R. P. FEYNMAN* 

| Π                     | 2023 Bulava et al. [LQCD]                                                                                                      | Klong 20xx<br>SIDDHARTA2 20xx         | Kaon bear<br>Kaonic De |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|
| NNLO UCHPT            | 2022 Sadasivan et al.<br>2022 Lu et al.                                                                                        |                                       |                        |
|                       | 2019 Anisovich et al.<br>2018 Bayar et al.<br>2018 Revai et al.<br>2018 Codociver et al.                                       | AMADEUS 2022                          | K- absorp              |
| Lattice QCD           | 2018 Sadasivan et al<br>2016 Cieply et al.<br>2015 Hall et al. (LQCD)<br>2014 Mai/Meißner                                      | CLAS 2018<br>HADES 2013               | in-flight ca           |
| Production amplitudes | 2013 Roca/Oset<br>2013 Guo/Oller<br>2012 Mai/Meißner<br>2012 Ikeda/Hyodo/Weise<br>2001 Lutz, Kolomeitsev<br>2001 Oller/Meißner | SIDDHARTA 2011<br>COSY 2008           | Photoproc              |
|                       | 1998 Oset/Ramos<br>1997 Lutz                                                                                                   |                                       | Kaonic Hy              |
| ChPT                  | 1995 Kaiser et al.<br>1985 Veitand et al.                                                                                      |                                       |                        |
| Quark model           | 1978 Isgur Karl                                                                                                                | Hemingway 1985                        |                        |
| THEORY                | 1960 Dalitz/Tuan<br>1959 Dalitz/Tuan                                                                                           | Rutherford Lab 1980s<br><br>LNL 1960s | Bupp                   |



# NEW STRANGENESS RESONANCES

## Sub-( $\bar{K}N$ )-threshold $\Lambda(1405)$ resonance

- $\blacktriangleright$  second state  $\Lambda(1380)$  predicted from UCHPT
- no direct experimental verification
- confirmed by many critical tests / LQCD

| NNLO UCHPT                           | 2023 Bulava et al. [LQCD]<br>2022 Sadasivan et al.<br>2022 Lu et al.                                                                                                                                | Klong 20xx<br>SIDDHARTA2 20xx                          | Kaon bea<br>Kaonic De    |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|
|                                      | 2019 Anisovich et al.<br>2018 Bayar et al.<br>2018 Revai et al.<br>2018 Sadasivan et al                                                                                                             | AMADEUS 2022<br>AMADEUS 2018                           | K- absorp                |
| Lattice QCD<br>Production amplitudes | 2016 Cieply et al.<br>2015 Hall et al. (LQCD)<br>2014 Mai/Meißner<br>2013 Roca/Oset<br>2013 Guo/Oller<br>2012 Mai/Meißner<br>2012 Ikeda/Hyodo/Weise<br>2001 Lutz, Kolomeitsev<br>2001 Oller/Meißner | CLAS 2015<br>HADES 2013<br>SIDDHARTA 2011<br>COSY 2008 | in-flight c<br>Photoproc |
| UCHPT<br>Baryon ChPT<br>ChPT         | 1998 Oset/Ramos<br>1997 Lutz<br>1995 Kaiser et al.<br>1985 Veitand et al.                                                                                                                           |                                                        |                          |
| Quark model                          | 1978 Isgur Karl                                                                                                                                                                                     | Hemingway 1985                                         | E Seque                  |
| THEORY                               | 1960 Dalitz/Tuan<br>1959 Dalitz/Tuan                                                                                                                                                                | Rutherford Lab 1980s<br><br>LNL 1960s                  | NIN Bubb                 |



# UNIVERSAL

#### **Transition amplitude — chiral unitary approach[1]**

Chiral Perturbation Theory (#QCD#EFT) form of the interaction at low energies



[1] Weise/Kaiser/Meißner/Lutz/Oset/Oller/Ramos/Hyodo/Borasoy...
 [2] Kaiser/Siegel/Weise Phys.Lett.B 362 (1995) Lutz/Soyeur Nucl.Phys.A 773 (2006); MM et al. Phys.Lett.B 697 (2011); ...

# UNIVERSAL PARAMETERS





# UNIVERSAL

#### **Transition amplitude — chiral unitary approach[1]**

Chiral Perturbation Theory (#QCD#EFT) form of the interaction at low energies

![](_page_9_Figure_3.jpeg)

#### Unitary amplitude from the Bethe-Salpeter equation

(Fit free parameters to experimental data or LQCD)

[1] Weise/Kaiser/Meißner/Lutz/Oset/Oller/Ramos/Hyodo/Borasoy...
 [2] Kaiser/Siegel/Weise Phys.Lett.B 362 (1995) Lutz/Soyeur Nucl.Phys.A 773 (2006); MM et al. Phys.Lett.B 697 (2011); ...

# UNIVERSAL PARAMETERS

#### Maxim Mai – PAW 2024

![](_page_9_Picture_9.jpeg)

**10** PAW 2024

# UNIVERSAL

#### **Transition amplitude — chiral unitary approach[1]**

Chiral Perturbation Theory (#QCD#EFT) form of the interaction at low energies

![](_page_10_Figure_3.jpeg)

#### Unitary amplitude from the Bethe-Salpeter equation

(Fit free parameters to experimental data or LQCD)

[1] Weise/Kaiser/Meißner/Lutz/Oset/Oller/Ramos/Hyodo/Borasoy...
 [2] Kaiser/Siegel/Weise Phys.Lett.B 362 (1995) Lutz/Soyeur Nucl.Phys.A 773 (2006); MM et al. Phys.Lett.B 697 (2011); ...

![](_page_10_Figure_7.jpeg)

![](_page_10_Figure_8.jpeg)

Re W<sub>CMS</sub>/GeV

## S-matrix principles analyticity, unitarity, Riemann sheets, ...

![](_page_10_Picture_12.jpeg)

![](_page_10_Picture_13.jpeg)

#### **Transition amplitude — chiral unitary approach[1]**

Chiral Perturbation Theory (#QCD#EFT) form of the interaction at low energies

![](_page_11_Figure_3.jpeg)

#### Unitary amplitude from the Bethe-Salpeter equation

(Fit free parameters to experimental data or LQCD)

[1] Weise/Kaiser/Meißner/Lutz/Oset/Oller/Ramos/Hyodo/Borasoy...
 [2] Kaiser/Siegel/Weise Phys.Lett.B 362 (1995) Lutz/Soyeur Nucl.Phys.A 773 (2006); MM et al. Phys.Lett.B 697 (2011); ...

# UNIVERSAL PARAMETERS

## reaction-independent parameters

![](_page_11_Figure_9.jpeg)

![](_page_11_Figure_10.jpeg)

Re W<sub>CMS</sub>/GeV

## **S-matrix principles** analyticity, unitarity, Riemann sheets, ...

![](_page_11_Picture_14.jpeg)

![](_page_11_Picture_15.jpeg)

![](_page_11_Picture_16.jpeg)

#### **Transition amplitude — chiral unitary approach[1]**

Chiral Perturbation Theory (#QCD#EFT) form of the interaction at low energies

![](_page_12_Figure_3.jpeg)

#### Unitary amplitude from the Bethe-Salpeter equation

(Fit free parameters to experimental data or LQCD)

[1] Weise/Kaiser/Meißner/Lutz/Oset/Oller/Ramos/Hyodo/Borasoy...
 [2] Kaiser/Siegel/Weise Phys.Lett.B 362 (1995) Lutz/Soyeur Nucl.Phys.A 773 (2006); MM et al. Phys.Lett.B 697 (2011); ...

## UNIVERSAL PARAMETERS

## reaction-independent parameters

![](_page_12_Figure_9.jpeg)

Re  $W_{\rm CMS}/{\rm GeV}$ 

## **S-matrix principles** analyticity, unitarity, Riemann sheets, ...

![](_page_12_Picture_13.jpeg)

![](_page_12_Picture_14.jpeg)

![](_page_12_Picture_15.jpeg)

![](_page_13_Picture_0.jpeg)

### **CHPT encodes quark mass dependence**

• Available Lattice spectrum — BaSc setup<sup>[1]</sup>  $M_{\pi} \approx 200 \text{ MeV } M_{K} = \approx 487 \text{ MeV}$  $M_{\pi}L = 4.181(16) \ a = 0.0633(4)(6) \text{ fm}$ 

## UNPHYSICAL QUARK MASSES

![](_page_13_Figure_5.jpeg)

#### Maxim Mai – PAW 2024

![](_page_13_Picture_7.jpeg)

Lattice QCD

![](_page_13_Picture_9.jpeg)

![](_page_14_Picture_0.jpeg)

## **CHPT encodes quark mass dependence**

- Available Lattice spectrum BaSc setup<sup>[1]</sup>  $M_{\pi} \approx 200 \,\mathrm{MeV} \,M_{K} = \approx 487 \,\mathrm{MeV}$  $M_{\pi}L = 4.181(16)$  a = 0.0633(4)(6) fm
- Compare to prediction of UCHPT<sup>[2]</sup>

# UNPHYSICAL QUARK MASSES

![](_page_14_Figure_6.jpeg)

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_15_Picture_0.jpeg)

\* MM, Chris Culver, Andrei Alexandru, Michael Döring, Frank X. Lee Phys.Rev.D 100 (2019) 11

Dehua Guo, Raquel Molina, Andrei Alexandru, MM, Michael Döring Phys.Rev.D 98 (2018) 1

\* Michael Döring, Bin Hu, MM Phys.Lett.B 782 (2018) 785-793

Neramballi Ripunjay Acharya, Feng-Kun Guo, Maxim Mai, Ulf-G. Meißner Phys.Rev.D 92 (2015) 054023

# **RESONANT AMPLITUDE**

### **Chiral perturbation theory**

Perturbative expansion of QCD Green's functions small momenta/masses of new DOF ( $\pi, K, \eta$ )

 $\downarrow$  well-defined QFT, power counting  $T^{I\ell} = T_2^{I\ell} + T_4^{I\ell} + \dots$ 

no resonances!

[1] Pelaez/Rodas/Elvira Eur.Phys.J.ST 230 (2021) 6; Danilkin/Deineka/Vanderhaeghen Phys.Rev.D 103 (2021) 11; Binosi/PilloniTripolt Phys.Lett.B 839 (2023) 137809 ...
 [2] Dobado/Pelaez Phys.Rev.D 47 (1993) 4883-4888; Pelaez/Nebreda Phys.Rev.D 81 (2010) 054035 ...

### Analytic tools<sup>[1]</sup>

S-matrix, dispersion relations, continued fraction,...

👍 data driven

In the other strength is the ory (channel-by-channel)

![](_page_16_Picture_10.jpeg)

![](_page_16_Picture_11.jpeg)

![](_page_16_Picture_12.jpeg)

#### **Chiral perturbation theory**

Perturbative expansion of QCD Green's functions small momenta/masses of new DOF ( $\pi, K, \eta$ )

 $\downarrow$  well-defined QFT, power counting  $T^{I\ell} = T_2^{I\ell} + T_4^{I\ell} + \dots$ 

**P** no resonances!

#### **Inverse Amplitude Method**<sup>[2]</sup>

restoration of S-matrix properties (Unitarity/Crossing)

- cross-channel  $f_0(500), \rho(770), f_0(980), \kappa(800), K^*(892)$
- connection to QCD (Nc/CP/quark mass dependence)

model dependence (regularisation)

[1] Pelaez/Rodas/Elvira Eur.Phys.J.ST 230 (2021) 6; Danilkin/Deineka/Vanderhaeghen Phys.Rev.D 103 (2021) 11; Binosi/PilloniTripolt Phys.Lett.B 839 (2023) 137809 ...
 [2] Dobado/Pelaez Phys.Rev.D 47 (1993) 4883-4888; Pelaez/Nebreda Phys.Rev.D 81 (2010) 054035 ...

![](_page_17_Figure_11.jpeg)

![](_page_17_Picture_13.jpeg)

![](_page_18_Figure_1.jpeg)

GWQCD Finite-volume spectrum: Guo et al. (2016,2018) Culver et al. (2019)  $M_{\pi} = 224,315 \,\mathrm{MeV}$   $L \lesssim 4 \,\mathrm{fm}$ 

## **Cross-channel** $\pi\pi$ scattering (I = 0, 1, 2)

- interpretation of LQCD results<sup>[1]</sup>
- resonance trajectories<sup>[2]</sup>
- \*  $\pi\pi\pi$  amplitudes<sup>[3]</sup>

## APPLICATIONS

![](_page_18_Picture_10.jpeg)

![](_page_18_Picture_11.jpeg)

![](_page_19_Figure_1.jpeg)

GWQCD Finite-volume spectrum: Guo et al. (2016,2018) Culver et al. (2019)  $M_{\pi} = 224,315 \,{\rm MeV}$   $L \lesssim 4 \,{\rm fm}$ 

## **Cross-channel** $\pi\pi$ scattering (I = 0, 1, 2)

- interpretation of LQCD results<sup>[1]</sup>
- resonance trajectories<sup>[2]</sup>
- \*  $\pi\pi\pi$  amplitudes<sup>[3]</sup>

# APPLICATIONS

![](_page_19_Figure_9.jpeg)

Phase-shifts in heavy universe (IAM+Lüscher's method)  $M_{\pi} = 224,315 \, \text{MeV} \ L = \infty$ 

![](_page_19_Picture_12.jpeg)

20

![](_page_20_Figure_1.jpeg)

GWQCD Finite-volume spectrum: Guo et al. (2016,2018) Culver et al. (2019)  $M_{\pi} = 224,315 \,{\rm MeV}$   $L \lesssim 4 \,{\rm fm}$ 

## **Cross-channel** $\pi\pi$ scattering (I = 0, 1, 2)

- interpretation of LQCD results<sup>[1]</sup>
- resonance trajectories<sup>[2]</sup>
- $\pi\pi\pi$  amplitudes<sup>[3]</sup>

# APPLICATIONS

![](_page_20_Figure_9.jpeg)

Phase-shifts in heavy universe (IAM+Lüscher's method)  $M_{\pi} = 224,315 \, \text{MeV} \ L = \infty$ 

![](_page_20_Figure_11.jpeg)

Chiral extrapolation to our universe  $M_{\pi} = 135 \,\mathrm{MeV}$   $L = \infty$ **No-fit comparison with experimental data**<sup>[4]</sup>

![](_page_20_Picture_14.jpeg)

![](_page_20_Picture_15.jpeg)

# **RESONANT AMPLITUDE**

![](_page_21_Picture_4.jpeg)

[1] NPLQCD; HadSpec; ETMC; GWQCD; CP-PACS;....
[2] MM/Culver/Döring/Alexandru/Lee/Brett *Phys.Rev.D* 100 (2019) 11
[3] MM/Döring/Alexandru/Lee/Culver/Sadasivan Phys.Rev.Lett. 127 (2021) 22

### Strangeness mesons

EFT/Unitarity based studies exist<sup>[1]</sup>

similar behaviour:

 $f_0(500) \leftrightarrow \kappa(800), \rho(770) \leftrightarrow K^*(892)$ 

### Challenges

- More unknowns
- Less data (LQCD<sup>[2]</sup> & Experiment)

## **RESONANT AMPLITUDE**

![](_page_22_Figure_10.jpeg)

![](_page_22_Figure_12.jpeg)

![](_page_22_Picture_13.jpeg)

# SUMMARY

**EXPERIMENT** 

### Synergetic approach to hadron resonances through

### **Phenomenology + Lattice QCD + Effective Field Theories**

- Unified pictures of resonances
  - quark mass behaviour
    - unified cross-channel studies
      - predictive power

![](_page_23_Picture_9.jpeg)

# SUMMARY

**EXPERIMENT** 

### Synergetic approach to hadron resonances through

### **Phenomenology + Lattice QCD + Effective Field Theories**

- Unified pictures of resonances
  - quark mass behaviour
    - unified cross-channel studies
      - predictive power

#### Magic wand wishes

more precise LQCD studies (+ systematics)

 $\Rightarrow$  unified  $S = 0, \pm 1, \pm 2, \dots$  theory

Stronger experimental constraints

![](_page_24_Picture_13.jpeg)

# 

## **Chiral unitary approach**<sup>[1]</sup>

- Chiral Perturbation Theory (#QCD#EFT)
  - form of the interaction at low energies 0
- Unitary amplitude from the Bethe-Salpeter equation
  - Fit free parameters to experimental data / LQCD 0
  - Record complex pole-positions 0
  - Many states can be explained<sup>[2]</sup> 0

[1] Weise/Kaiser/Meißner/Lutz/Oset/Oller/Ramos/Hyodo/Borasoy...

[2] Kaiser/Siegel/Weise Phys.Lett.B 362 (1995) Lutz/Soyeur Nucl.Phys.A 773 (2006); MM et al. Phys.Lett.B 697 (2011); ...

![](_page_26_Figure_10.jpeg)

![](_page_26_Figure_11.jpeg)

(2023) 7

![](_page_26_Picture_15.jpeg)

![](_page_27_Picture_0.jpeg)

## **CHPT encodes quark mass dependence**

• SU(3) limit provides a simpler resonance structure<sup>[1]</sup>

 $\rightarrow$  1 singlet + 2 octet poles

→ LO/NLO "tracks" differ<sup>[2]</sup>

Resonance +>> virtual bound state +>> bound state

(?) Lattice QCD

[1] Jido et al. Nucl.Phys.A 725 (2003); Garcia-Recio/Lutz/Nieves Phys.Lett.B 582 (2004) 49-54;
 [2] Guo/Kamyia/MM/Meißner Phys.Lett.B 846 (2023)

![](_page_27_Figure_8.jpeg)

![](_page_27_Picture_10.jpeg)

![](_page_28_Picture_0.jpeg)

## **CHPT encodes quark mass dependence**

• Available Lattice spectrum — BaSc setup<sup>[1]</sup>

 $M_{\pi} \approx 200 \,\mathrm{MeV} \,M_{K} = \approx 487 \,\mathrm{MeV}$ 

 $M_{\pi}L = 4.181(16)$  a = 0.0633(4)(6) fm

• Unified analysis<sup>[2]</sup> LQCD+UCHPT+EXPERIMENT<sup>[2]</sup>

... mostly ok, but not always

... what's about Hyperons?<sup>[3]</sup>

[1] [BaSc] Bulava et al. Phys.Rev.Lett. 132 (2024) 5; 2307.13471

[2] Pittler/MM & Vonk/MM in progress

[3] Garcia-Recio/Lutz/Nieves Phys.Lett.B 582 (2004) 49-54; ...

### preliminary

![](_page_28_Figure_12.jpeg)

**29** PAW 2024