

3-BODY PROBLEM FROM PHENOMENOLOGY AND LATTICE QCD

MAXIM MAI

University of Bonn | The George Washington University

Heisenberg-Programm

DFG Deutsche Forschungsgemeinschaft

NSF PHY-2012289

DFG

DOE DE-SC0016582

DOE DE-SC0016583

THREE-BODY PROBLEM

Gravitational three-body problem

- goal: space-time trajectories
- challenges:
 - no closed solutions
 - in general non-repeating (few exceptions^[1])
- birth of mathematical chaos^[2]

THREE-BODY PROBLEM

Quantum mechanical three-body problem

- goal: rigorous scattering theory
- challenges:
 - continuum of two-body scattering states^[1]
 - 8 kinematic degrees of freedom

Impact

- Many known states have large 3-body content
 - Roper N(1440)
 - X(3872)
 - $a_1(1260), a_1(1420)?$
- Beyond Standard Model searches (τ -EDM/...)
- Exotic states of matter^[1]

HADRON SPECTRUM

Experimental input

- many high-precision experiments^[2] \rightarrow line-shapes resonances <--> increased interaction rates
 - mod reaction-type
 - mod kinematic singularities^[3]

Universal resonance parameter

- S-matrix theory: transition amplitude
 - Unitarity/Analyticity/Crossing symmetry
 - Poles on unphysical Riemann Sheets
- Boundary ($E \in \mathbb{R}$):
 - Experiment
 - Lattice QCD
 - CHPT

 $\operatorname{Re} E/\operatorname{GeV}$

Universal resonance parameter

- S-matrix theory: *transition amplitude*
 - Unitarity/Analyticity/Crossing symmetry
 - Poles on unphysical Riemann Sheets ____
- Boundary ($E \in \mathbb{R}$):
 - Experiment —
 - Lattice QCD _
 - CHPT _

 $\operatorname{Re} E/\operatorname{GeV}$

Maxim Mai – DPG-Frühjahrstagung 2024

0.00

Universal resonance parameter

- S-matrix theory: *transition amplitude*
 - Unitarity/Analyticity/Crossing symmetry _
 - Poles on unphysical Riemann Sheets
- Boundary ($E \in \mathbb{R}$):
 - Experiment —
 - Lattice QCD _
 - CHPT _

 $\operatorname{Re} E/\operatorname{GeV}$

Maxim Mai – DPG-Frühjahrstagung 2024

0.00

Universal resonance parameter

- S-matrix theory: transition amplitude
 - Unitarity/Analyticity/Crossing symmetry
 - Poles on unphysical Riemann Sheets
- Boundary ($E \in \mathbb{R}$):
 - Experiment
 - Lattice QCD
 - CHPT

Tridge (Midland, MI/USA)

TRANSITION AMPLITUDE

TRANSITION AMPLITUDE

"Infinite Volume Unitarity" — IVU formalism^[1]

- Express 3-body through a 2+1 system^[2]
 - Unitarity(on-shell configurations): $B, \Sigma \in \mathbb{C}$
 - Dynamics(input): $C, \tilde{K} \in \mathbb{R}$

[1] MM/Hu/Döring/Pilloni/Szczepaniak Eur.Phys.J.A 53 (2017)
 [2] Related approaches: Hansen/Sharpe(2014)....; Wunderlich et al. JHEP 08 (2019); Jackura et al. Eur.Phys.J.C 79 (2019);

HILBERT'S HOTEL

"Infinite Volume Unitarity" — IVU formalism

- Analytic structure of the one-particle exchange
 - Left-hand cuts^[1] $T_{cc}(3875)$ etc..
 - Landau singularities
 - Triangles^[2] + Boxes + Boxes + \dots ^[3] 0

 [1] Du et al. Phys.Rev.Lett. 131 (2023) 13; Hansen et al. 2401.06609 [hep-lat]
 [2] Korpa/Lutz/Guo/Heo Phys.Rev.D 107 (2023) 3; Isken et al. 2309.09695; ... Ketzer/Mikhashenko/Aceti/Dai/Oset/Bayar/Guo... [3] Sakhtivasan/MM in preparation

https://www.ias.edu/ideas/2016/pires-hilbert-hotel

HILBERT'S HOTEL

"Infinite Volume Unitarity" — IVU formalism

- Analytic structure of the one-particle exchange
 - Left-hand cuts^[1] $T_{cc}(3875)$ etc..
 - Landau singularities
 - Triangles^[2] + Boxes + Boxes+...^[3] 0

HILBERT'S HOTEL

"Infinite Volume Unitarity" — IVU formalism

- Analytic structure of the one-particle exchange
 - Left-hand cuts^[1] $T_{cc}(3875)$ etc..
 - Landau singularities
 - Triangles^[2] + Boxes + Boxes+...^[3] 0

"Infinite Volume Unitarity" — IVU formalism

- Analytic structure of the one-particle exchange

Lattice QCD: numerical access to QCD Green's functions:

Euclidean space-time / unphysical pion mass / finite-volume

S-matrix, phenomenology, experiment...

[1] Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... Reviews: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018) 2 Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

Lattice QCD: numerical access to QCD Green's functions:

Euclidean space-time / unphysical pion mass / finite-volume

S-matrix, phenomenology, experiment...

[1] Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... **Reviews**: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018) 2 Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

"Finite Volume Unitarity" – FVU formalism

- On-shell particles "feel" the box-size
- Three-body quantization condition

Lattice QCD: numerical access to QCD Green's functions:

Euclidean space-time / unphysical pion mass / finite-volume

S-matrix, phenomenology, experiment...

[1] Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... **Reviews**: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018) 2 Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

FVU
det
$$\left[2L^3 E_{\mathbf{p}} \left(\tilde{K}_2^{-1} - \Sigma_2^L \right) - B - C \right]^{T_{1g}}$$

"Finite Volume Unitarity" — FVU formalism

- On-shell particles "feel" the box-size
- Three-body quantization condition

IVU

$$T^{c} = B + C + \int \frac{d^{3}\ell}{(2\pi)^{3}} \frac{(B+C)}{2E_{l}} \frac{1}{\tilde{K}_{n}^{-1} - \Sigma_{n}}$$

BLUEPRINT — $a_1(1260)$

INPUT[']

[1] Schael [ALEPH] Phys.Rept. 421 (2005); Nucl.Phys.B 79; Phys.Rev.D 7; [GWQCD] PRD94(2016) PRD98 (2018) PRD 100(2019)
 [2] Sadasivan/MM/Döring/Alexandru/Culver/Lee Phys.Rev.D 101 (2020); MM/Culver/Sadasivan/Brett/Döring/Alexandru/Lee [GWQCD] PRL 127 (2021) other phenomenological determinations: JPAC/....

TRANSITION AMPLITUDES

OUTPUT^[2]

BLUEPRINT – $a_1(1260)$

TRANSITION AMPLITUDES

 [1] Schael [ALEPH] Phys.Rept. 421 (2005); Nucl.Phys.B 79; Phys.Rev.D 7; [GWQCD] PRD94(2016) PRD98 (2018) PRD 100(2019)
 [2] Sadasivan/MM/Döring/Alexandru/Culver/Lee Phys.Rev.D 101 (2020); MM/Culver/Sadasivan/Brett/Döring/Alexandru/Lee [GWQCD] PRL 127 (2021) other phenomenological determinations: JPAC/....

OUTPUT^[2]

ROPER N(1440) – FINITE VOLUME

Simplified pilot study^[1]

self-energy formalism via particle-dimer Lagrangian

l no particle-exchange diagrams

Predict finite-volume spectrum for fixed parameters

 \rightarrow energy shifts very small (opposing effects of $N\sigma$

and $\Delta\pi$ channels)

→ phenomenological input necessary

SUMMARY

THANK YOU

$$T^c = B + C + \int \frac{d^3t}{(2\pi)^3} dt$$

Infinite volume three-body formalism

- Unitarity induced analytic structure
- universal resonance parameter
- singularity structure/Landau singularities

Finite-volume three-body formalism FVU

- 3b quantization condition
- several applications
- first chiral trajectories of 3b-resonances

OUTLOOK

- $\pi\pi N$ content of Roper-resonance •
 - ... connections to DCC global studies
- $\pi\pi\Lambda$ and strangeness resonances (?)
- $\overline{K}d$ scattering
-

"Finite Volume Unitarity" – FVU formalism

- On-shell particles "feel" the box-size
- Three-body quantization condition

FVU
det
$$\left[2L^3 E_{\mathbf{p}} \left(\tilde{K}_2^{-1} - \Sigma_2^L \right) - B - C \right]^{T_{1g}}$$

[1] Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... **Reviews**: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018) 2 Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

ROPER N(1440) – **PHENOMENOLOGY**

Global analysis (bird's view)

- many experimental data & ongoing experiments
 - @MAMI, @ELSA, @JLAB,...
 - $\gamma N \rightarrow \pi(\pi) N, \eta N, K \Lambda \dots$
- Jülich-Bonn-Washington^[1,2] DCC

 \rightarrow Roper has very unusual $f(W, Q^2)$: $\pi\pi N$ effect(?)

 \rightarrow Transition form-factors^[3]

 [1] [JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201; Eur.Phys.J.A 59 (2023) 12; jbw.phys.gwu.edu/
 [2] Related approaches MAID/SAID/Gent/ANLOsaka [3] Wang/MM/... in progress

ANL-Osaka model.

PRELIMINARY

- Theory frontier: NNLO UCHPT determination^[1]
- Consistently two poles, but the second pole is less well known
 - second pole below KbarN threshold
 - line-shape only through $_{Y}p \rightarrow K\pi\Sigma^{[2]}$

. . .

APPLICATION: a₁(1260)

- $\pi\rho$ dynamics dominates the 1-(1++) system
- Integral equation solved
 - Helicity formalism
 - complex momentum mapping
- $\pi \rho / \pi \sigma / \pi (\pi \pi)_2$ extended...

3-BODY QUANTIZATION CONDITION (FVU)

• Finite-volume unitarity (FVU^[1])

- heavily simplified:
 - on-shell particle-configurations: $\Delta E \sim mL$
 - off-shell particle-configurations: $\Delta E \sim e^{-mL}$
- Unitary 3-body amplitude separates these effect
- unknown volume independent quantities (K, C)

ots
$$0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$$

CUTOFF DEPENDENCE^[1]

- 3-body amplitude = genuine integral equation
 - spectator can carry arbitrary momentum away
 - cutoff required (form factors, hard cutoff,...) $0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$

$$B(\sqrt{s}) = \frac{1}{\sqrt{s} - \sqrt{s_{\rm on}} + i\epsilon}$$

energy eigenvalues change slower than $\Delta E \sim e^{-mL}$

one-particle exchange falls off not rapidly enough

CUTOFF DEPENDENCE^[1]

- 3-body amplitude = genuine integral equation
 - spectator can carry arbitrary momentum away
 - cutoff required (form factors, hard cutoff,...) $0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$

$$B(\sqrt{s}) = \frac{1}{\sqrt{s} - \sqrt{s_{\rm on}} + i\epsilon}$$

Consider fixed *C*, *K* then increase <u>hard</u> cutoff over-subtract OPE

$$B(\sqrt{s}) = B(0) + B'(0)\sqrt{s} + \frac{s}{s_{\text{on}}} \frac{N}{2E_{p+p'}} \frac{1}{\sqrt{s} - \sqrt{s_{\text{on}}}}$$

• energy eigenvalues change as $\Delta E \sim e^{-mL}$

CUTOFF DEPENDENCE^[1]

- 3-body amplitude = genuine integral equation
 - spectator can carry arbitrary momentum away
 - cutoff required (form factors, hard cutoff,...) $0 = \det \left| 2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right|_{\mathbf{p}'\mathbf{p}}$

Consider fixed ground-state finite-volume level (E_0)

- change cutoff & refit C
- $\pi \rho / \pi (\pi \pi)_2$ repulsiv system

- New insights^[1] from LQCD [next talk]
 - confirming two-pole scenario
- Chiral extrapolations (through UCHPT)^[2]
 - u-channel baryon exchange may complicate the picture (3-body)
 - sub-leading effect

U-CHANNEL IN THE $\Lambda(1405)$

Re[pole]/MeV

$$\{1, 8_{\rm s}, 8_{\rm a}, 10, \overline{10}, 27\}$$

$$\begin{pmatrix} |\pi\Sigma\rangle \\ |\bar{K}N\rangle \\ |\eta\Lambda\rangle \\ |K\Xi\rangle \end{pmatrix} = \frac{1}{\sqrt{40}} \begin{pmatrix} \sqrt{15} & -\sqrt{24} & 0 & -1 \\ -\sqrt{10} & -2 & \sqrt{20} & -\sqrt{6} \\ -\sqrt{5} & -\sqrt{8} & 0 & 3\sqrt{3} \\ \sqrt{10} & 2 & 2\sqrt{5} & \sqrt{6} \end{pmatrix} \begin{pmatrix} |1\rangle \\ |8\rangle \\ |8'\rangle \\ |27\rangle \end{pmatrix},$$

$$C_{\alpha\beta} = \begin{pmatrix} 6 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} \quad \text{for} \quad \alpha, \beta \in \{1, 8, 8', 27\}.$$

$$C_{\alpha\beta}^{\text{NLO1}} = \begin{pmatrix} \frac{4}{3}(3b_0 + 7b_D)m_q & 0 & 0 & 0\\ 0 & \frac{2}{3}(6b_0 + b_D)m_q & -\sqrt{20}b_Fm_q & 0\\ 0 & -\sqrt{20}b_Fm_q & 2(2b_0 + 3b_D)m_q & 0\\ 0 & 0 & 0 & 4(b_0 + b_D)m_q \end{pmatrix},$$

$$C_{\alpha\beta}^{\text{NLO2}} = \begin{pmatrix} -3d_2 + \frac{9}{2}d_3 + d_4 & 0 & 0\\ 0 & \frac{1}{2}(-3d_2 + d_3 + 2d_4) & -\frac{\sqrt{5}}{2}d_1 & 0\\ 0 & -\frac{\sqrt{5}}{2}d_1 & \frac{1}{2}(9d_2 - d_3 + 2d_4) & 0\\ 0 & 0 & 0 & \frac{1}{2}(2d_2 + d_3 + 2d_4) \end{pmatrix}$$

NLO breaks accidental octet symmetry

RESULTS

Delta(1232):

- Large multipoles well determined
- simple Q² dependence

[JBW] MM et al. *Phys.Rev.C* 103 (2021) 6; Phys.Rev.C 106 (2022) 015201

HADRONIC 3-BODY PROBLEM: IMPACT

• Roper(1440) $\rightarrow \pi\pi N$ [first FV

evaluations¹]

- $X(3872) \rightarrow DbarD\pi$
- $a_1(1260) \rightarrow \pi \pi \pi$

Severt/MM/Meißner JHEP04(2023) >>> PHD talk on Friday
 Srunyan et al. [CMS@CERN] PRL122

3) Experimental programs: Gluex@JLAB; COMPASS@CERN;

Intricate kinematics/dynamics

- 8 variables
- 2-body sub-channel dynamics

LATTICE HADRON SPECTROSCOPY

- Experimentally inaccessible scenarios:
 - Unconventional quantum numbers
 - Three-body scattering

. . .

• Unphysical pion mass (chiral trajectories)

HADRONS IN A BOX

on-shell particle-configurations: $\Delta E \sim mL$

off-shell particle-configurations: $\Delta E \sim e^{-mL}$

Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...
 Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

HADRONS IN A BOX

Finite-volume spectrum is real and discrete!

- ... requires mapping: Quantization condition^{1,2}
- Beavily simplified:

on-shell particle-configurations: $\Delta E \sim mL$

off-shell particle-configurations: $\Delta E \sim e^{-mL}$

A unitary "T-matrix" accounts for all O(mL) effects!

¹⁾ Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...

²⁾ Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

3-BODY QUANTISATION CONDITION

Finite-volume unitarity (FVU)^{1,2}

- separates volume dependent terms
- volume independent terms connect infinite/finitevolume spectra

$$0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$$

"Heavier Universe"

Current frontier: 3-body dynamics from LQCD

➡ 3-body Quantization Conditions¹

➡ RFT / FVU / NREFT

➡ many perturbatively interacting systems are studied²

 Rusetsky, Bedaque, Grießhammer, Sharpe, Meißner, Döring, Hansen, Davoudi, Guo.... Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

2) MM/Döring PRL122(2019); Blanton et al. PRL 124 (2020); Hansen et al. PRL 126 (2021);

$$0 = \det\left(L^3\left(\tilde{F}/3 - \tilde{F}(\tilde{K}_2^{-1} + \tilde{F} + \tilde{G})^{-1}\tilde{F}\right)^{-1} + K_{\rm df},\right)$$

$$0 = \det \left(B_0 + C_0 - E_L \left(K^{-1} / (32\pi) + \Sigma_L \right) \right)$$

Variate $g(\varphi_1 \rightarrow \varphi_0 \varphi_0 \varphi_0)$ coupling:

- avoided level crossing becomes wider
- RFT and FVU

AVOIDED LEVEL CROSS

	the stand of the state						
	a	m_1	c_0	c_1	m_1'	c_0'	c_1'
FVU	-0.1512(9)	3.0229(1)	-0.0188(35)	_	_	_	_
\mathbf{RFT}	-0.1522(12)	-	_	_	3.0232(2)	31.6(8.4)	_
FVU	-0.1569(12)	3.0233(2)	-0.0297(57)	2.29(38)	_	_	_
\mathbf{RFT}	-0.1571(10)	۲ ^μ	—	_	3.0237(2)	37.6(9.0)	2789(540
FVU	-0.1521(11)	3.0205(2)	-0.0475(66)	_	_	_	_
RFT	-0.1531(13)	—	_	_	3.0212(3)	80(14)	_
FVU	-0.1549(16)	3.0205(2)	-0.0595(99)	0.93(41)	_	_	_
RFT	-0.1563(27)	-	_	_	3.0213(3)	97(16)	1773(980
FVU	-0.1444(11)	3.0184(2)	-0.1136(77)	_	_	_	_
RFT	-0.1450(17)	—	—	_	3.0199(2)	178(17)	_
FVU	-0.1464(14)	3.0183(2)	-0.1363(148)	0.84(39)	_	_	_
RFT	-0.1484(16)	—	—	_	3.0200(2)	210(23)	2227(600
it is a second se							

... same fit quality

... observables determined consistently

Pole positions

- FVU: complex energy-plane analysis¹
 - -- resonance width grows ~ g^2
 - -- avoided level crossing gap >> width
- Similarly from RFT with Breit-Wigner like approximation

