Meson-baryon scattering
 in manifest Lorentz invariant chiral perturbation theory

Maxim Mai

June 2nd 2010

MM, P. C. Bruns, B. Kubis and U.-G. Meißner
Phys. Rev. D 80 (2009) 094006 (arXiv:0905.2810 (hep-ph))

Why and how...

- fundamental part of various processes
- large amount of data up to quite high energies
\hookrightarrow GWU: 30K data points for $\pi N \rightarrow \pi N$
- simplicity of the process

low energy \longrightarrow effective field theory:
- $\chi P T_{2(3)}$
...expanding the QCD Greens functions in \{small meson momenta\} and \{up, down and (strange) $\}$ - quark masses

Power counting:

$$
\begin{aligned}
& \mathcal{L}_{\phi}=\mathcal{L}_{\phi}^{(2)}+\mathcal{L}_{\phi}^{(4)}+\ldots \\
& \mathcal{L}_{\phi B}=\mathcal{L}_{\phi B}^{(1)}+\mathcal{L}_{\phi B}^{(2)}+\mathcal{L}_{\phi B}^{(3)}+\ldots
\end{aligned}
$$

- 1st order: $\mathcal{L}_{\phi B}^{(1)} \longrightarrow$ WT and Born type: D, F, m_{0}
- 2nd order: $\mathcal{L}_{\phi B}^{(2)} \longrightarrow$ contact terms (11 LECs \leftarrow FIT)
- 3rd order:
$\mathcal{L}_{\phi B}^{(3)} \longrightarrow$ contact terms (13 LECs \leftarrow neglected)
$\mathcal{L}_{\phi B}^{(1)}, \mathcal{L}_{\phi}^{(2)}, \mathcal{L}_{\phi}^{(4)} \longrightarrow$ wave function renormalization

How...

$\mathcal{L}_{\phi B}^{(1)} \longrightarrow$ one loop diagrams (+crossed):

\rightsquigarrow regularization:

How...(regularization)

- dim-Reg of the UV-divergencies
- baryons carry intrinsic scale $m_{0} \sim 1 \mathrm{GeV}$ (even if $\left.m_{u, d, s}=0\right)$

$$
\begin{gathered}
\mathbf{H}\left(p^{2}, M^{2}, m_{0}^{2}\right)=\frac{1}{i} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-M^{2}\right)\left((k-p)^{2}-m_{0}^{2}\right)}=\frac{\Gamma(2-d / 2)}{(4 \pi)^{d / 2}} \int_{0}^{1} \Delta_{z^{\frac{d}{2}-2} d z}^{\Delta_{z}=m_{0}^{2} z^{2}-2 m_{0} M \frac{p^{2}-M^{2}-m_{0}^{2}}{2 m_{0} M} z(1-z)+M^{2}(1-z)^{2}}
\end{gathered}
$$

\rightsquigarrow Infrared Regularization of baryon loops: (respects low energy PC) + (manifest Lorentz invariance)

Becher, Leutwyler (1999)

$$
\begin{aligned}
\underbrace{\int_{0}^{1}(\ldots) d z}_{\mathbf{H}}=\underbrace{\int_{0}^{\infty}(\ldots) d z}_{\mathbf{I}}-\underbrace{\int_{1}^{\infty}(\ldots) d z}_{\mathbf{R}} \\
\overbrace{M^{d-3}\left(c_{0}+c_{1} M+c_{2} M^{2}+\ldots\right)}^{\int_{1}^{\infty}} \overbrace{\left(d_{0}+d_{1} M+d_{2} M^{2}+\ldots\right)}^{\overbrace{1}}
\end{aligned}
$$

Result

- scattering length:

$$
a_{\phi B}=\frac{m_{B}}{4 \pi\left(m_{B}+M_{\phi}\right)} T_{\phi B}\left(s_{t h r}\right)
$$

- F_{ϕ}, M_{ϕ}, D, F : fixed to the physical values, $m_{0}=1.15 \mathrm{GeV}$, $0.938 \mathrm{GeV}<\mu<1.314 \mathrm{GeV}$
- the HB result is obtained by expanding and truncating $T_{\phi \mathrm{B}}$ at finite chiral order
$-\left\{b_{0}, b_{D}, b_{F}, b_{1}, \ldots, b_{11}\right\} \longleftrightarrow\left\{\sigma_{\pi N},\left\{m_{B}\right\}, a_{\pi N}^{+}, a_{K N}^{(1)}, a_{K N}^{(0)}\right\} / d_{0}$
Ellis, Torikoshi (2000), Bernard, Kaiser, Meißner (1993) Schroeder (πN) (2001), Martin(KN) (1980)

Channel	$=$	$\mathcal{O}\left(q^{1}\right)$	$+\mathcal{O}\left(q^{2}\right)_{I R[H B]}$	$+\mathcal{O}\left(q^{3}\right)_{I R[H B]}$	$\sum_{\mathbb{R}[H B]}$	
$a_{\pi N}^{(3 / 2)}$	$=$	-0.12	$+0.05[+0.05]$	$+0.04[-0.06]$	$-0.04_{-0.07}^{+0.07}\left[-0.13_{-0.03}^{+0.03}\right]$	-0.13 ± 0.01
$a_{\pi N}^{(1 / 2)}$	$=$	+0.21	$+0.05[+0.05]$	$-0.19[+0.00]$	$+0.07_{-0.07}^{+0.07}\left[+0.26_{-0.03}^{+0.03}\right]$	-0.25 ± 0.03
$a_{\pi \equiv}^{3 / 2)}$	$=$	-0.12	$+0.04[+0.04]$	$+0.10[-0.09]$	$+0.02_{-0.07}^{+0.06}\left[-0.17_{-0.03}^{+0.03}\right]$	
$a_{\pi \equiv}^{(1 / 2)}$	$=$	+0.23	$+0.04[+0.04]$	$-0.24[-0.03]$	$+0.02_{-0.10}^{+0.08}\left[+0.23_{-0.03}^{+0.03}\right]$	
$a_{\pi \Sigma}^{(2)}$	$=$	-0.24	$+0.10[+0.07]$	$+0.15[-0.07]$	$+0.01_{-0.04}^{+0.04}\left[-0.24_{-0.01}^{+0.01}\right]$	
$a_{\pi \Sigma}^{(1)}$	$=$	+0.22	$+0.09[+0.11]$	$-0.21[+0.00]$	$+0.10_{-0.17}^{+0.17}\left[+0.33_{-0.06}^{+0.06}\right]$	
$a_{\pi \Sigma}^{(0)}$	$=$	+0.46	$+0.11[-0.01]$	$-0.47[+0.04]$	$+0.10_{-0.19}^{+0.17}\left[+0.49_{-0.08}^{+0.07}\right]$	
$a_{\pi \Lambda}^{(1 / 2)}$	$=$	-0.01	$+0.03[+0.03]$	$-0.03[-0.11]$	$-0.01_{-0.04}^{+0.04}\left[-0.09_{-0.01}^{+0.01}\right]$	

Channel	=	$\mathcal{O}\left(q^{1}\right)$	$+\mathcal{O}\left(q^{2}\right)_{\mathbb{R}}$	$+\mathcal{O}\left(q^{3}\right)_{\mathbb{R}}$	$\sum_{\text {IR }}$	
$a_{K N}^{(1)}$	=	-0.45	+0.60	-0.48	${ }_{-0.33_{-0.32}^{+0.32}}$	-0.33
$a_{K N}^{(0)}$	$=$	+0.04	-0.15	$+0.13$	$+0.02_{-0.64}^{+0.64}$	+0.02
$a_{\bar{K} N}^{(1)}$	$=$	$+0.20$	+0.22	$-0.26+0.18 i$	$+0.16_{-0.44}^{+0.39}+0.18 i$	$+0.37+0.60 i$
$a_{\bar{K} N}^{(0)}$	$=$	+0.53	+0.97	$-0.40+0.22 i$	$+1.11_{-0.59}^{+0.47}+0.22 i$	$-1.70+0.68 i$
$a_{K \Sigma}^{(3 / 2)}$	=	-0.31	+0.33	$-0.30+0.12 i$	$-0.28_{-0.49}^{+0.52}+0.12 i$	
$a_{K \Sigma}^{(1 / 2)}$	=	$+0.47$	+0.19	$+0.20+0.01 i$	$+0.87_{-0.64}^{+0.55}+0.01 i$	
$a_{\bar{K} \Sigma}^{(3 / 2)}$	$=$	-0.22	+0.24	$-0.35+0.08 i$	$-0.33_{-0.47}^{+0.44}+0.08 i$	
$a_{\bar{K} \Sigma}^{(1 / 2)}$	$=$	+0.34	+0.38	$+0.27+0.01 i$	$+0.98{ }_{-0.59}^{+0.59}+0.01 i$	
$a_{K \equiv}^{(1)}$	=	+0.15	+0.34	$-0.02+0.17 i$	$+0.48{ }_{-0.43}^{+0.43}+0.17 i$	
$a_{K \equiv}^{(0)}$	=	$+0.66$	+0.98	$-0.62+0.14 i$	$+1.02-0.68$ +0.51 $+0.14 i$	
$a_{\bar{K}}^{(1)}$	$=$	-0.50	+0.66	-0.42	$\begin{aligned} & -0.26_{-0.34}^{+0.34} \end{aligned}$	
$a_{\bar{k}}^{(0)}$	=	-0.15	+0.02	$+0.13$	$\begin{array}{r} -0.34 \\ +0.00_{-0.68}^{+0.78} \end{array}$	
$a_{K \wedge}^{(\Gamma / 2)}$	$=$	-0.04	+0.50	$-0.27+0.14 i$	$+0.19_{-0.56}^{+0.55}+0.14 i$	
$a_{\bar{K} \Lambda}^{(1 / 2)}$	$=$	-0.05	+0.50	$-0.40+0.18 i$	$+0.04_{-0.56}^{+0.55}+0.18 i$	
$a_{n N}^{(1 / 2)}$	$=$	-0.01	+0.26	$-0.13+0.19 i$	$+0.13_{-0.65}^{+0.60}+0.19 i$	$+0.62+0.30 i$
$a_{n \equiv}^{(1 / 2)}$	$=$	-0.09	+0.84	$-0.49+0.17 i$	$+0.25_{-0.73}^{-0.74}+0.17 i$	
$a_{n \Sigma}^{(1)}$	$=$	-0.04	+0.22	$-0.15+0.13 i$	$+0.03{ }_{-0.24}^{+0.24}+0.13 i$	
$a_{n \Lambda}^{(0)}$	=	-0.04	+0.70	$-0.51+0.38 i$	$+0.15{ }_{-0.55}^{+0.51}+0.38 i$	$+0.64+0.80 i$

Low energy constants (LECs)

- integrating out strange quark $S U(3) \longrightarrow S U(2)$

- double scale expansion: $m_{0} \gg M_{K} \gg M_{\pi}$

1. IR-regularized loop integrals in three-flavor formulation
2. expand in $\left\{\left(t-2 M_{\pi}^{2}\right), M_{\pi}^{2},\left(s-m_{0}\right)^{2}\right\}$
3. expand in $\left\{M_{K}\right\}$ to first order

Low energy constants (LECs)

$$
\begin{aligned}
& \begin{aligned}
& c_{1}=b_{0}+\frac{b_{D}}{2}+\frac{b_{F}}{2}+\frac{M_{K}}{256 \pi F_{\pi}^{2}} {\left[5 D^{2}-6 D F+9 F^{2}+\frac{2}{3 \sqrt{3}}(D-3 F)^{2}\right]+\mathcal{O}\left(M_{K}^{2}\right), } \\
& c_{2}=b_{8}+b_{9}+b_{10}+2 b_{11}-\frac{M_{K}}{128 \pi F_{\pi}^{2}} {\left[6+\frac{19}{3} D^{4}+4 D^{3} F+\frac{58}{3} D^{2} F^{2}-12 D F^{3}\right.} \\
&\left.+25 F^{4}-\frac{8(D-3 F)^{2}(D+F)^{2}}{3 \sqrt{3}}\right]+\mathcal{O}\left(M_{K}^{2}\right), \\
& c_{3}=\ldots, c_{4}=\ldots \\
& \text { shifts: } \\
& \Delta c_{1}=+0.2 \mathrm{GeV}^{-1}, \Delta c_{2}=-2.1 \mathrm{GeV}^{-1} \Delta\left(c_{2}+c_{3}-2 c_{1}\right)=-0.1 \mathrm{GeV}^{-1} \\
& \Delta c_{3}=+1.6 \mathrm{GeV}^{-1}, \Delta c_{4}=+2.0 \mathrm{GeV}^{-1}
\end{aligned}
\end{aligned}
$$

- the same is performed for the $\pi \equiv, \pi \Sigma$ and $\pi \Lambda$ sector

Low energy theorems (LETs)

- πB LETs are useful for chiral extrapolations of LQCD results:

$$
\begin{aligned}
& T_{\pi N}^{+}=\frac{M_{\pi}^{2}}{F_{\pi}^{2}}\left\{-\frac{g^{2}}{4 m_{N}}+2\left(c_{2}+c_{3}-2 c_{1}\right)+\frac{3 g^{2} M_{\pi}}{64 \pi F_{\pi}^{2}}+\mathcal{O}\left(M_{\pi}^{2}\right)\right\} \\
& T_{\pi N}^{-}=\frac{M_{\pi}}{2 F_{\pi}^{2}}\left\{1+\frac{g^{2} M_{\pi}^{2}}{4 m_{N}^{2}}+\frac{M_{\pi}^{2}}{8 \pi^{2} F_{\pi}^{2}}\left(1-2 \log \frac{M_{\pi}}{\mu}\right)+M_{\pi}^{2} d_{\pi N}^{r}(\mu)+\mathcal{O}\left(M_{\pi}^{4}\right)\right\}
\end{aligned}
$$

πN isovector combination is stable with respect to the kaon mass effects (known)

- also can be done for the $\pi \equiv, \pi \Sigma$ and $\pi \Lambda$ sector

$$
\begin{aligned}
& \bar{T}_{\pi \Sigma}^{-}=\frac{2 M_{\pi}}{F_{\pi}^{2}}\left\{1+\frac{g_{\Sigma}^{2} M_{\pi}^{2}}{16 m_{\Sigma}^{2}}+\frac{g_{\Sigma \Lambda}^{2} M_{\pi}^{2}}{4\left(m_{\Lambda}+m_{\Sigma}\right)^{2}}+M_{\pi}^{2} d_{\pi \Sigma}^{r}(\mu)\right. \\
&\left.\quad+\frac{M_{\pi}^{2}}{8 \pi^{2} F_{\pi}^{2}}\left(1-2 \log \frac{M_{\pi}}{\mu}\right)+\mathcal{O}\left(M_{\pi}^{3}\right)\right\}
\end{aligned}
$$

Low energy theorems (LETs)

(a)
$a_{\pi^{+} \Sigma^{+}}=-0.197 \pm 0.011 \mathrm{fm}$
$a_{\pi^{+} \equiv 0}=-0.098 \pm 0.017 \mathrm{fm}$
Torok et al. 2009

Summary

- scattering lengths calculated to one loop in $S U(3)-\chi P T$: very slow convergence of the chiral series. (without third order contact terms)
- within the $\pi N, \pi$ 三, $\pi \Sigma$ and $\pi \wedge$ sector constraints on the LECs to NLO are calculated.
- novel low-energy theorems in the pion-hyperon sector are derived.

