Independent determination of the Lambda decay parameter

arXiv:1904.07616

Maxim Mai

with D. G. Ireland M. Döring D. I. Glazier J. Haidenbauer R. Murray-Smith D. Rönchen

- Λ decays weakly to $p\pi^-$
- The decay parameter: α_{-}

• The decay parameter: α_{-}

- essential for many modern experiments

e.g. LEAR@CERN, STAR@BNL, ATLAS@CERN

• The decay parameter: α_{-}

- essential for many modern experiments
- affects decay parameters of other hyperons

e.g. LEAR@CERN, STAR@BNL, ATLAS@CERN

e.g. Trippe et al. (1967), Bono et al. (CLAS) (2018)

PDG live (2019)

OUR AVERAGE

• The decay parameter: α_{-}

- essential for many modern experiments
- affects decay parameters of other hyperons

 Ω^- DECAY PARAMETERS

 $\alpha(\Omega^{-}) \alpha_{-}(\Lambda)$ FOR $\Omega^{-} \rightarrow \Lambda K^{-}$

EVTS

OUR AVERAGE

Some early results have been omitted.

VALUE

 0.0115 ± 0.0015

e.g. Trippe et al. (1967), Bono et al. (CLAS) (2018)

$\alpha(\boldsymbol{\Xi}^{0}) \alpha_{-}(\boldsymbol{\Lambda})$		
This is a product of the $\Xi^0 \to \Lambda \pi^0$ and $\Lambda \to p \pi^-$ asy		
VALUE	EVTS	
-0.261 ± 0.006	OUR AVERAGE	

 Ξ^0 DECAY PARAMETERS

See the ``Note on Baryon Decay Parameters" ir

- impacts LO parameters of SU(3) baryon ChPT

PDG live (2019)

Holstein (2000) Borasoy/Marco (2003)

- The decay parameter: α_{-}
 - essential for many modern experiments
 - affects decay parameters of other hyperons

 Ω^- DECAY PARAMETERS

 $\alpha(\Omega^{-}) \alpha_{-}(\Lambda) \text{ FOR } \Omega^{-} \rightarrow \Lambda K^{-}$

EVTS

OUR AVERAGE

Some early results have been omitted.

e.g. Trippe et al. (1967), Bono et al. (CLAS) (2018)

See the ``Note on Baryon Decay Parameters" ir	
$\alpha(\Xi^0) \alpha_{-}(\Lambda)$	
This is a product of the $\Xi^0 \to \Lambda \pi^0$ and $\Lambda \to p \pi^-$ asy	

D/F

 VALUE
 EVTS

 -0.261 ± 0.006
 OUR AVERAGE

 Ξ^0 DECAY PARAMETERS

PDG live (2019)

Holstein (2000)

Borasoy/Marco (2003)

- impacts LO parameters of SU(3) baryon ChPT
- essential for $(\gamma p \rightarrow K^+ \Lambda)$

VALUE

 0.0115 ± 0.0015

THIS TALK: ESTIMATE α_{-}

Different parameters > matter-antimatter asymmetry

Sakharov (1967)

Oifferent parameters > matter-antimatter asymmetry

Sakharov (1967)

α+		α-
-0.71 ±0.08	PDG average	0.642±0.013
$-0.758 \pm 0.010 \pm 0.007$	BESIII (J/ψ→ΛΛbar) <mark>Nature (2019)</mark>	$0.750 \pm 0.009 \pm 0.004$

Different parameters > matter-antimatter asymmetry

Sakharov (1967)

α+		α-
-0.71 ±0.08	PDG average	0.642±0.013
-0.758±0.010±0.007	BESIII (J/ψ→ΛΛbar) <mark>Nature (2019)</mark>	$0.750 \pm 0.009 \pm 0.004$

RECENT PRESS COVERAGE

BESIII (2018) & this work

BESIII (2018)

DETERMINATION OF α_ FROM KAON PHOTOPRODUCTION

Experimental setup

Experimental setup

$$): 1 + \alpha_{-} \cos \theta_{y} \mathbf{P}$$

$$-p_{L}^{\gamma} \cos 2\phi \mathbf{\Sigma}$$

$$-\alpha_{-}p_{L}^{\gamma} \cos 2\phi \cos \theta_{y} \mathbf{T}$$

$$-\alpha_{-}p_{L}^{\gamma} \sin 2\phi \cos \theta_{x} \mathbf{O}_{x}$$

$$-\alpha_{-}p_{L}^{\gamma} \sin 2\phi \cos \theta_{z} \mathbf{O}_{z}$$

 $(CP): 1 + \alpha_{-} \cos \theta_{y} \mathbf{P}$ $+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{x} \mathbf{C}_{x}$ $+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{z} \mathbf{C}_{z}$

Experimental setup

$$): 1+\alpha_{-}\cos\theta_{y}\mathbf{P}$$
$$-p_{L}^{\gamma}\cos 2\phi\Sigma$$
$$-\alpha_{-}p_{L}^{\gamma}\cos 2\phi\cos\theta_{y}\mathbf{T}$$
$$-\alpha_{-}p_{L}^{\gamma}\sin 2\phi\cos\theta_{x}\mathbf{O}_{x}$$
$$-\alpha_{-}p_{L}^{\gamma}\sin 2\phi\cos\theta_{z}\mathbf{O}_{z}$$

$$(CP): 1 + \alpha_{-} \cos \theta_{y} \mathbf{P}$$
$$+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{x} \mathbf{C}_{x}$$
$$+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{z} \mathbf{C}_{z}$$

• 7 polarization observables: $P, \Sigma, T, O_x, O_z, C_x, C_z$

[CLAS] McCracken et al.(2010) [CLAS] Bradford et al.(2007) [CLAS] Paterson et al. (2016)

Experimental setup

P):
$$1 + \alpha_{-} \cos \theta_{y} \mathbf{P}$$

 $-p_{L}^{\gamma} \cos 2\phi \Sigma$
 $-\alpha_{-}p_{L}^{\gamma} \cos 2\phi \cos \theta_{y} \mathbf{T}$
 $-\alpha_{-}p_{L}^{\gamma} \sin 2\phi \cos \theta_{x} \mathbf{O}_{x}$
 $-\alpha_{-}p_{L}^{\gamma} \sin 2\phi \cos \theta_{z} \mathbf{O}_{z}$

$$(CP): 1 + \alpha_{-} \cos \theta_{y} \mathbf{P}$$
$$+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{x} \mathbf{C}_{x}$$
$$+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{z} \mathbf{C}_{z}$$

• 7 polarization observables: $P, \Sigma, T, O_x, O_z, C_x, C_z$

[CLAS] McCracken et al.(2010) [CLAS] Bradford et al.(2007) [CLAS] Paterson et al. (2016)

• Kinematic variables: θ_i, W_i

Experimental setup

$$P(t) : 1 + \alpha_{-} \cos \theta_{y} \mathbf{P}$$
$$-p_{L}^{\gamma} \cos 2\phi \mathbf{\Sigma}$$
$$-\alpha_{-}p_{L}^{\gamma} \cos 2\phi \cos \theta_{y} \mathbf{T}$$
$$-\alpha_{-}p_{L}^{\gamma} \sin 2\phi \cos \theta_{x} \mathbf{O}_{x}$$
$$-\alpha_{-}p_{L}^{\gamma} \sin 2\phi \cos \theta_{z} \mathbf{O}_{z}$$

$$(CP): 1 + \alpha_{-} \cos \theta_{y} \mathbf{P}$$
$$+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{z} \mathbf{C}_{x}$$
$$+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{z} \mathbf{C}_{z}$$

• 7 polarization observables: $P, \Sigma, T, O_x, O_z, C_x, C_z$

[CLAS] McCracken et al.(2010) [CLAS] Bradford et al.(2007) [CLAS] Paterson et al. (2016)

• Kinematic variables: θ_i, W_i

• 1 fundamental: α_{-} , and 2 calibration parameters: p_{L}^{γ} , p_{C}^{γ}

Experimental setup

):
$$1 + \alpha_{-} \cos \theta_{y} \mathbf{P}$$

 $-p_{L}^{\gamma} \cos 2\phi \mathbf{\Sigma}$
 $-\alpha_{-}p_{L}^{\gamma} \cos 2\phi \cos \theta_{y} \mathbf{T}$
 $-\alpha_{-}p_{L}^{\gamma} \sin 2\phi \cos \theta_{x} \mathbf{O}_{x}$
 $-\alpha_{-}p_{L}^{\gamma} \sin 2\phi \cos \theta_{z} \mathbf{O}_{z}$

$$(CP) : 1 + \alpha_{-} \cos \theta_{y} \mathbf{P}$$
$$+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{x} \mathbf{C}_{x}$$
$$+ p_{C}^{\gamma} \alpha_{-} \cos \theta_{z} \mathbf{C}_{z}$$

• 7 polarization observables: $P, \Sigma, T, O_x, O_z, C_x, C_z$

[CLAS] McCracken et al.(2010) [CLAS] Bradford et al.(2007) [CLAS] Paterson et al. (2016)

FIERZ IDENTITIES

• Kinematic variables: θ_i, W_i

• 1 fundamental: α_{-} , and 2 calibration parameters: $p_{L}^{\gamma}, p_{C}^{\gamma}$

BUT: observables are not independent

● Helicity space maps on Clifford algebra ➤ Fierz identities:

Chiang, Tabakin (1997) Sandorfi et al. (2011)

● Helicity space maps on Clifford algebra ➤ Fierz identities:

Chiang, Tabakin (1997) Sandorfi et al. (2011)

 $O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1 \& \Sigma P - C_xO_z + C_zO_x - T = 0$

● Helicity space maps on Clifford algebra ➤ Fierz identities:

Chiang, Tabakin (1997) Sandorfi et al. (2011)

 $O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1 \& \Sigma P - C_xO_z + C_zO_x - T = 0$

Implication

- \Rightarrow Observables are not independent
- \Rightarrow determine α_{-} such that FI are fulfilled

● Helicity space maps on Clifford algebra ➤ Fierz identities:

Chiang, Tabakin (1997) Sandorfi et al. (2011)

$$O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1 \& \Sigma P - C_xO_z + C_zO_x - T = 0$$

2 Implication \Rightarrow Observables are not independent W = 1.84 GeVW = 1.86 GeV0 \Rightarrow determine α_{-} such that FI are fulfilled 2 1 W = 1.96 GeVW = 1.98 GeV0 2 \Rightarrow statistically non-trivial question α –[PDG] W = 2.08 GeVW = 2.10 GeVα_[PDG] / a -1 0 0

• Define random variables:

 $\mathcal{N}[\mu, \sigma^2]$ from CLAS measurements $\mathcal{F}_i^{(1)} = a^2 l^2 \left(\mathcal{O}_{x,i}^2 + \mathcal{O}_{z,i}^2 - \mathcal{T}_i^2 \right) + a^2 c^2 \left(\mathcal{C}_{x,i}^2 + \mathcal{C}_{z,i}^2 \right) + l^2 \Sigma_i^2 + a^2 \mathcal{P}_i^2$

...similarly for second F.I.

• Define random variables:

$$\mathcal{F}_{i}^{(1)} = a^{2}l^{2}\left(\mathcal{O}_{x,i}^{2} + \mathcal{O}_{z,i}^{2} - \mathcal{T}_{i}^{2}\right) + a^{2}c^{2}\left(\mathcal{C}_{x,i}^{2} + \mathcal{C}_{z,i}^{2}\right) + l^{2}\Sigma_{i}^{2} + a^{2}\mathcal{P}_{i}^{2}$$

...similarly for second F.I.

• FV, a, I, c become random variables, but:

A. Scaling: $\begin{cases} Data and errors are scaled with a, l, c & d'Agostini (1994) \\ Normalization of PDF[a^2O^2] & d'Agostini (1994) \end{cases}$

B. Most "observables" and scale parameters enter quadratically

& Is there a closed form of $PDF[\mathcal{F}_i]$?

Roe (2015)

A. Scaling

Imagine linear case: $\mathscr{F} := a \mathscr{O} = 1$

 $\mathcal{F} := a \mathcal{O} = 1$

$$\mathcal{O} = \mathcal{N}[\mu, \sigma^2]$$

A. Scaling

Imagine linear case:

and the second second

$$:= a \mathcal{O} = 1$$
$$p_{\mathcal{F}}(f, a) = \int dO p(O) \delta(aO - f)$$

$$\mathcal{O} = \mathcal{N}[\mu, \sigma^2]$$

A. Scaling

Imagine linear case:

case:
$$\mathscr{F} := a \mathscr{O} = 1$$

 $p_{\mathscr{F}}(f, a) = \int dO p(O) \delta(aO - f)$
 $p_{\mathscr{F}}(1, a) = \frac{1}{a\sqrt{2\pi\mu\sigma}} e^{-\frac{(1-a\mu)^2}{2(a\sigma)^2}}$ conditional probability

A. Scaling

A. Scaling

B. Non-linearity

$$\mathcal{O} \sim \mathcal{N}[\mu, \sigma^2] \implies \mathcal{Y} = \mathcal{O}^2 \sim NC_{\chi^2}$$

B. Non-linearity

$$\mathcal{O} \sim \mathcal{N}[\mu, \sigma^2] \implies \mathcal{Y} = \mathcal{O}^2 \sim NC_{\chi^2}$$

non-central chi squared distribution

$$\mu_{\mathscr{Y}} = \mu_{\mathscr{O}}^2 + \sigma_{\mathscr{O}}^2, \quad \sigma_{\mathscr{Y}}^2 = 2\sigma_{\mathscr{O}}^2(2\mu_{\mathscr{O}}^2 + \sigma_{\mathscr{O}}^2)$$

B. Non-linearity

$$\mathcal{O} \sim \mathcal{N}[\mu, \sigma^2] \implies \mathcal{Y} = \mathcal{O}^2 \sim NC_{\chi^2}$$

non-central chi squared distribution

$$\mu_{\mathscr{Y}} = \mu_{\mathscr{O}}^2 + \sigma_{\mathscr{O}}^2, \quad \sigma_{\mathscr{Y}}^2 = 2\sigma_{\mathscr{O}}^2(2\mu_{\mathscr{O}}^2 + \sigma_{\mathscr{O}}^2)$$

 \implies Expectation value of Fierz identity \neq 1

$$\Delta f := 1 + a^2 \,\sigma_P^2 - a^2 \,l^2 \,\sigma_T^2 + \dots$$

Combined likelihood function:

 $\prod_{in \text{ points}} p^{(1)}(f_i^{(1)} = \Delta f_i | a, l, c) \cdot p^{(2)}(f_i^{(2)} = 0 | a, l, c)$

kin. points

- likelihood for a, l, c to fulfill F.I.
- attention: $\Delta f \neq 1$

 $\mathcal{P}(a,l,c \,|\, \{\mathcal{O}\}) \quad \propto \quad \mathcal{P}(\{\mathcal{O}\} \,|\, a,l,c) \cdot \mathcal{P}(l,c)$

- prior knowledge of calibration parameters $\delta_l = 0.05, \ \delta_c = 0.02$
- test various forms ➤ systematics

Iltimately – blind test on synthetic data

re-sampling test of both Fierz identities:

- 300 kin. points
- 200 000 samples

Iltimately – blind test on synthetic data

Or... blind test on model data (JuBo 2019)

- 500 sets of observables from JuBonn model

Rönchen et al 2014

- Wrong α_{-} is dialed in

SUMMARY

- Kaon photoproduction data contains information on Lambda decay parameter: α-
- $\ensuremath{{ \bullet}}$ Fierz identities allow for an extraction of $\alpha_{\mathchar`-}$
- Careful statistical interpretation is in order:
 - Scaling bias (similar to d'Agostini bias) Non-linearities ...

multiple simulations and tests ➤ "bias-free" procedure

Final result is close to the recent BES III value

SPARES

Iltimately – blind test on model data (JuBo 2019)

SPARES

Observable	χ^2/n (Refits)		
(# data points)	$\alpha_{-} = 0.642$	0.75	0.721
$d\sigma/d\Omega$ (421) [15]	1.11	1.03	0.95
Σ (314) [17]	2.55	2.61	2.56
T (314) [17]	1.75	1.74	1.69
P (410) [15]	1.84	1.66	1.62
C_x (82) [16]	2.15	1.72	1.34
C_z (85) [16]	1.58	1.83	1.62
O_x (314) [17]	1.44	1.53	1.51
O_z (314) [17]	1.34	1.58	1.49
all (2254)	1.67	1.66	1.59

TABLE II. χ^2 /data point of the Jülich-Bonn refits for different values of α_- . The value of $\alpha_- = \alpha_-^{\text{PDG}} = 0.642$ corresponds to the refit to unscaled data, $\alpha_- = 0.75$ correponds to the BES-III result [1] and $\alpha_- = 0.721$ uses the data-driven result of this study as input for the refit.