$\Lambda(1405)$ from $(\pi \Sigma)K$ photoproduction

University Bonn The George Washington University

Maxim Mai

INTRODUCTION

Maxim Mai (U. Bonn | GWU)

this talk

Impact

Test of our understanding of QCD

- 1) Review by Gal/Hungerford/Millener (2016); **TALK: Shevchenko, Sekihara**
- 2) Cieply et al. (2011); ...

Maxim Mai (U. Bonn | GWU)

CURIOUS CASE: $\Lambda(1405)$

Impact

- Test of our understanding of QCD
- KbarNN & KbarNNN bound states¹

1) Review by Gal/Hungerford/Millener (2016); **TALK: Shevchenko, Sekihara**

2) Cieply et al. (2011); ...

Maxim Mai (U. Bonn | GWU)

CURIOUS CASE: $\Lambda(1405)$

Impact

- Test of our understanding of QCD
- KbarNN & KbarNNN bound states¹
- K- in medium²

K- condensate can change NS EoS

... many theoretical challenges³

1) Review by Gal/Hungerford/Millener (2016); **TALK: Shevchenko, Sekihara**

2) Cieply et al. (2011); ...

Maxim Mai (U. Bonn | GWU)

CURIOUS CASE: $\Lambda(1405)$

Pal et al. (2000)

Universal resonance parameters:

 analyticity of the scattering amplitude → poles on the 2. Riemann sheet

1) Hall et al. PRL 114(2015); **TALK: A.W.Thomas**

Maxim Mai (U. Bonn | GWU)

KBARN SCATTERING

Review: MM Eur.Phys.J.ST 230 (2021)

Universal resonance parameters:

- analyticity of the scattering amplitude → poles on the 2. Riemann sheet
- physical information at $E \in \mathbb{R}$ from:
 - 1. Theory: Lattice QCD¹
 - 2. Experiment

1) Hall et al. PRL 114(2015); **TALK: A.W.Thomas**

Maxim Mai (U. Bonn | GWU)

KBARN SCATTERING

Review: MM Eur.Phys.J.ST 230 (2021)

Challenge

- many data available above/at the KbarN threshold¹
- going below...

→ use chiral symmetry / unitarity / ... ²

- 1) Bubble chamber experiments; [SIDDHARTA] Bazzi et al. (2009);
- 2) **Reviews**: Meißner(2020); MM (2021); Hyodo (2021);
- 3) e.g. [CLAS] Moryia et al. (2015)

Maxim Mai (U. Bonn | GWU)

Sadasivan, MM, Döring (2019)

Challenge

- many data available above/at the KbarN threshold¹
- going below...

→ use chiral symmetry / unitarity / ... ²

experiments with 3-body final states³

- 1) Bubble chamber experiments; [SIDDHARTA] Bazzi et al. (2009);
- 2) **Reviews**: Meißner(2020); MM (2021); Hyodo (2021);
- 3) e.g. [CLAS] Moryia et al. (2015)

Maxim Mai (U. Bonn | GWU)

[CLAS] Moryia et al. (2015)

CLAS data on $\gamma p \rightarrow K^+ \pi \Sigma$

- 9 energy bins
- 60 values of $M(\pi\Sigma)$
- 3 channels: $\pi^+\Sigma^-$, $\pi^-\Sigma^+$, $\pi^0\Sigma^0$
- → J^P = 1/2⁻ "confirmed" experimentally
 → high statistics and good angular resolution

requires a photoproduction amplitude

CASE 1

"can photoproduction data reduce ambiguity on KbarN scattering amplitude?"

MM, Ulf-G. Meißner Eur. Phys. J.A 51 (2015) 3, 30

• Unitarity of the S-matrix:

> mathematical foundation of universality of resonance parameters

> one implementation: Bethe-Salpeter equation

Maxim Mai (U. Bonn | GWU)

HADRONIC PART

• Unitarity of the S-matrix:

> mathematical foundation of universality of resonance parameters

> one implementation: Bethe-Salpeter equation

• ChPT¹: (Effective field theory of QCD)

> incorporates symmetries of QCD

> reduces number of degrees of freedom

1) Weinberg (1979) Gasser, Leutwyler (1981)

Maxim Mai (U. Bonn | GWU)

HADRONIC PART

 $V(q_2, q_1; p) = A_{WT}(q_1 + q_2) + Born(s) + Born(u)$ $+A_{14}(q_1 \cdot q_2) + A_{57}[q_1, q_2] + A_M + A_{811}(q_2(q_1 \cdot p) + q_1(q_2 \cdot p))$

• Various implementations

many scenarios with NLO kernel¹ tested

1) Ikeda et al. (2012); Guo/Oller (2013); MM/Meißner (2013,14); Sadasivan et al. (2019)

Maxim Mai (U. Bonn | GWU)

HADRONIC PART

- Various implementations
 - → many scenarios with NLO kernel¹ tested
 - \rightarrow first NNLO calculation² including $K_{bar}N/\pi N/KN$

- 1) Ikeda et al. (2012); Guo/Oller (2013); MM/Meißner (2013,14); Sadasivan et al. (2019) 2) Lu/Geng/Döring/MM (2022)
 - Maxim Mai (U. Bonn | GWU)

HADRONIC PART

Lu/Geng/Döring/MM (2022)

- Various implementations
 - many scenarios with NLO kernel¹ tested
 - \rightarrow first NNLO calculation² including $K_{bar}N/\pi N/KN$
- Common feature:
 - good fit to threshold and scattering data
 - \blacktriangleright two poles with I=0, S=-1, J=1/2+

- 1) Ikeda et al. (2012); Guo/Oller (2013); MM/Meißner (2013,14); Sadasivan et al. (2019)
- 2) Lu/Geng/Döring/MM (2022)

Maxim Mai (U. Bonn | GWU)

HADRONIC PART

Review: MM Eur.Phys.J.ST 230 (2021)

Test model^{1,2}

- many new free parameters (C)
- no gauge invariance, parameters are not physical
- conservative test of the hadronic solutions

- 1) Oset, Roca (2013)
- 2) MM, Meissner(2015)

Maxim Mai (U. Bonn | GWU)

PHOTOPRODUCTION

Results:

• 8 local minima wrt. two-body data ($\chi^2 \sim 1$) each propagates to a two poles on the 2. RS

Maxim Mai (U. Bonn | GWU)

PHOTOPRODUCTION

Results:

• 8 local minima wrt. two-body data ($\chi^2 \sim 1$) each propagates to a two poles on the 2. RS

Maxim Mai (U. Bonn | GWU)

PHOTOPRODUCTION

PHOTOPRODUCTION

Results:

- 8 local minima wrt. two-body data ($\chi^2 \sim 1$) each propagates to a two poles on the 2. RS
- only 2 solutions survive test wrt photoproduction data

Maxim Mai (U. Bonn | GWU)

P.C. Bruns, A. Cieplý, M. Mai 2206.08767 [nucl-th] in print at Phys. Rev. D

level up the photoproduction model

CASE 2

1) Bruns/Cieply (2022); MM/Meißner (2015); Sadasivan et al. (2019)

2) arXiv:2012.11298 [nucl-th].

Maxim Mai (U. Bonn | GWU)

Theoretical constraints

FSI 2-body unitarity from chiral unitary and potential models¹

1) Bruns/Cieply (2022); MM/Meißner (2015); Sadasivan et al. (2019)

2) arXiv:2012.11298 [nucl-th].

Maxim Mai (U. Bonn | GWU)

• Theoretical constraints

FSI 2-body unitarity from chiral unitary and potential models¹

chiral symmetry constraints on the production vertex²

1) Bruns/Cieply (2022); MM/Meißner (2015); Sadasivan et al. (2019)

2) arXiv:2012.11298 [nucl-th].

Maxim Mai (U. Bonn | GWU)

Theoretical constraints

FSI 2-body unitarity from chiral unitary and potential models¹

chiral symmetry constraints on the production vertex²

gauge invariance included by construction

1) Bruns/Cieply (2022); MM/Meißner (2015); Sadasivan et al. (2019)

2) arXiv:2012.11298 [nucl-th].

Maxim Mai (U. Bonn | GWU)

arXiv:2012.11298 [nucl-th].

• Final state interaction yields structured lineshape

Maxim Mai (U. Bonn | GWU)

RESULTS

- Final state interaction yields structured lineshape
- Predictions (no free parameters) of lineshapes are vastly different wrt hadronic models

Maxim Mai (U. Bonn | GWU)

RESULTS

- Final state interaction yields structured lineshape
- Predictions (no free parameters) of lineshapes are vastly different wrt hadronic models
- Slight modification of re-scattering term leads to large changes of the line-shape

roadmap to future fits

Maxim Mai (U. Bonn | GWU)

RESULTS

SUMMARY/OUTLOOK

SUMMARY

"Photoproduction data starts to play crucial role for the KbarN physics"

generic production mechanisms:

> theoretical ambiguities reduced

microscopic models come into reach:

> FSI unitarity, chiral symmetry, gauge invariance

> line-shapes sensitive to the choice of models ... roadmap to future fits

