RESONANCE PARAMETER FROM LATTICE QCD

MAXIM MAI

... with J.-X. Lu, L.-S. Geng, M.Döring [Phys.Rev.Lett. 130 (2023) 7] ... with C.Culver, A.Alexandru, D.Sadasivan, M Döring [Phys.Rev.Lett. 127 (2022)] ... with M.Garofalo, F. Romero-López, A.Rusetsky, C.Urbach [JHEP 02 (2023) 252] ... with D.Severt, Ulf-G. Meißner [2212.02171 [hep-lat]]

FUNDING: DFG CRC 110 (GERMANY); DOE DE-SC0016582/DE-SC0016583 (USA); NSF PHY 2012289 (USA)

• Mostly unstable states: ≈100 mesons

≈50 baryons (****)

 Many states have considerable but not well known three-body content

HADRON SPECTRUM

[Particle Data Group] Workman et al. PTEP 2022 (2022) MM/Meißner/Urbach Phys.Rept. 1001 (2023)

- Analyticity of the S-matrix (complex energy)
 - poles on unphysical Riemann sheets
- Physical information (real energy)
 - experiment
 - theory (Lattice QCD)

UNIVERSAL PARAMETERS

- Analyticity of the S-matrix (complex energy)
 - poles on unphysical Riemann sheets
- Physical information (real energy)
 - experiment
 - theory (Lattice QCD)

UNIVERSAL PARAMETERS

Data: Estabrooks et al. Nucl.Phys.B '79; Protopopescu et al. Phys.Rev.D '7;

QCD \rightarrow CHPT \rightarrow UCHPT (S=-1, I=0, J^P=1/2⁻)

- Formalises established state: $\Lambda(1405)$
- Predicts¹ a new state: $\Lambda(1380)$
 - stable to many tests²

1) Oller/Meißner(2001), Ikeda/Hyodo/Weise(2011), MM/Meißner(2013), ... 2) Anisovitch et al.(2018), Cieply/Bruns(2022), Sadasivan/MM/Döring/...(2018/2022)

EXAMPLE: $\Lambda(1405)$

Review: MM Eur.Phys.J.ST 230 (2021)

QCD \rightarrow CHPT \rightarrow UCHPT (S=-1, I=0, J^P=1/2⁻)

model update

- NNLO CHPT kernel¹
- Unifies π**N**, **KN** and **KbarN** interactions
- 2-pole structure confirmed... again!

EXAMPLE: $\Lambda(1405)$

6

QCD \rightarrow CHPT \rightarrow UCHPT (S=-1, I=0, J^P=1/2⁻)

- input updates:
 - Motivated new experiments¹
 - Lattice QCD² (?)

1) CLAS, GlueX, SIDDHARTA2, JPARC, AMADEUS, KLOE, Klong, etc.. 2) **TALK**: Mohler

EXAMPLE: $\Lambda(1405)$

RESONANCE PARAMETERS FROM LATTICE QCD

 QCD Green's functions on discretized Euclidean space-time in finite volume

Quantization conditions (QC):

discrete finite-volume spectrum - infinitevolume quantities

GENERAL WORKFLOW

- New progress in the 3-body sector¹
 - RFT/NREFT/FVU 3b-quantization conditions
 - many new applications

1) Rusetsky, Bedaque, Grießhammer, Sharpe, Meißner, Döring, Hansen, Davoudi, Guo, Briceño....

Reviews:

Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

TALKS: Romero-López; Döring; Rusetsky; Sharpe; Draper

GENERAL WORKFLOW

EXAMPLE a₁(1260)

- 2- and 3-body lattice results with multi-hadron operators
- FVU identifies infinite-volume quantities
- Poles via 3b-integral equation
 - complex contour deformation¹

1) [GWQCD] PRD94(2016) PRD98 (2018) PRD 100(2019)

2) Sadasivan/MM/Akdag/Döring PRD 101 (2020)

3) MM/Culver/Sadasivan/Brett/Döring/Alexandru/Lee [GWQCD] PRL 127 (2022)

EXAMPLE N(1440) $J^{P}=1/2^{+}$

- Unusual line-shape¹ (large decay-ratios to threebody channels)
- Many interaction channels
- FVU/RFT/NREFT predictions are matter of time (mod. interest and resources)

Key questions for now:

Is it realistic to fix all free parameters form the *lattice? What precision do we require?*

EXAMPLE N(1440) $J^{P}=1/2^{+}$

Pilot study¹

- self-energy formalism from a particle-dimer Lagrangian
- 3-hadron configurations in self-energy formalism
- no particle-exchange diagrams

+ ...

EXAMPLE N(1440) $J^{P} = 1/2^{+}$

Pilot study¹

- self-energy formalism from a particle-dimer Lagrangian
- 3-hadron configurations in self-energy formalism
- 1 no particle-exchange diagrams

Finite-volume spectrum for fixed parameters

- energy shifts very small
- opposing effects of $N\sigma$ and $\Delta\pi$ channels

Lattice values (black dots) Lang et al. Phys.Rev.D 95 (2017) 1

+ ...

CRITICAL TESTS OF FINITE-VOLUME FORMALISMS

with M.Garofalo, MM, F. Romero-López, A.Rusetsky, C.Urbach

JHEP 02 (2023) 252

Complex φ^4 theory with an explicit 3-body state

$$\mathcal{L} = \sum_{i=0,1} \left[\frac{1}{2} \partial^{\mu} \varphi_{i}^{\dagger} \partial_{\mu} \varphi_{i} + \frac{1}{2} m_{i}^{2} \varphi_{i}^{\dagger} \varphi_{i} + \lambda_{i} (\varphi_{i}^{\dagger} \varphi_{i})^{2} \right] + \frac{g}{2} \varphi_{1}^{\dagger} \varphi_{0}^{3} + \text{h.c}$$

- implemented on the lattice¹
- similar to pilot 2-body studies²

1) https://github.com/HISKP-LQCD/Z2-phi4/tree/complex-ising

2) Gattringer and C.B. Lang, Phys. Lett. B 274 (1992) 95; Rummukainen/Gottlieb, Nucl. Phys. B 450 (1995) 397

SETUP

Complex φ^4 theory with an explicit 3-body state

$$\mathcal{L} = \sum_{i=0,1} \left[\frac{1}{2} \partial^{\mu} \varphi_{i}^{\dagger} \partial_{\mu} \varphi_{i} + \frac{1}{2} m_{i}^{2} \varphi_{i}^{\dagger} \varphi_{i} + \lambda_{i} (\varphi_{i}^{\dagger} \varphi_{i})^{2} \right] + \frac{g}{2} \varphi_{1}^{\dagger} \varphi_{0}^{3} + \text{h.c.} \,.$$

- implemented on the lattice¹
- similar to pilot 2-body studies²

1) https://github.com/HISKP-LQCD/Z2-phi4/tree/complex-ising

2) Gattringer and C.B. Lang, Phys. Lett. B 274 (1992) 95; Rummukainen/Gottlieb, Nucl. Phys. B 450 (1995) 397

SETUP

Key questions:

How well do RFT/FVU perform on the same data?

How does the avoided level crossing appear in 3-body systems?

SUMMARY: RFT/FVU

RFT^{1}/FVU^{2}

- same building blocks
- formal equivalence and relations exist⁴
- particular scheme may be advantageous in different circumstances

1) Hansen/Sharpe (2014) ...

2) MM/Döring EPJA 53 (2017) ...

3) Brett et al.Phys.Rev.D 104 (2021) 1; Jackura et al. Phys.Rev.D 100 (2019) 3

RFT¹ 0 = det
$$\left(L^3 \left(\tilde{F}/3 - \tilde{F} (\tilde{K}_2^{-1} + \tilde{F} + \tilde{G})^{-1} \tilde{F} \right)^{-1} + \tilde{F} (\tilde{K}_2^{-1} + \tilde{F} + \tilde{G})^{-1} \tilde{F} \right)^{-1}$$

FVU³
$$0 = \det \left(B_0 + C_0 - E_L \left(K^{-1} / (32\pi) + \Sigma_L \right) \right)$$

FINITE-VOLUME SPECTRUM

RFT and FVU fits

$$0 = \det \left(L^3 \left(\tilde{F}/3 - \tilde{F} (\tilde{K}_2^{-1} + \tilde{F} + \tilde{G})^{-1} \tilde{F} \right)^{-1} + K_{df,3} \right)$$
$$0 = \det \left(B_0 + C_0 - E_L \left(\frac{K^{-1}}{(32\pi) + \Sigma_L} \right) \right)$$

FINITE-VOLUME SPECTRUM

RFT and FVU fits

- 3-parameter fits are preferable
- fit quality RFT/FVU very similar
- observable quantities (a) consistent

M_0^2	$\chi^2_{ m dof}$
_	2.9
_	2.5
_	1.5
9(540)	1.5

AVOIDED LEVEL CROSSING

Increase $g(\varphi_1 \rightarrow 3\varphi_0)$ coupling \Rightarrow avoided level crossing becomes wider

COMPLEX POLES

- Analytic continuation of RFT/FVU scattering amplitudes to the complex energy plane
- Methods are different (so far):

	RFT	FVU
real kinematics	calculates	extrapolates
complex kinemaitcs	extrapolates	caculates

BUT: pole positions are consistent

COMPLEX POLES

- Analytic continuation of RFT/FVU scattering amplitudes to the complex energy plane
- Methods are different (so far):

	RFT	FVU
real kinematics	calculates	extrapolates
complex kinemaitcs	extrapolates	caculates

BUT: pole positions are consistent

SUMMARY

- Universal parameters of a new class of resonant systems become accessible
- Important progress from lattice and theory side
 - ... 3-body quantization conditions perform similarly well on the same inputs
- Parameters of $a_1(1260)$ already accessible from lattice
 - ... in a heavy universe
- Pilot studies of the Roper N(1440) finite-volume spectrum
 - ... large cancellations call for more (precise) inputs

The full dimer Lagrangian:

$$\begin{split} \mathcal{L}_{T} &= R^{\dagger} 2 W_{R} \left(i \partial_{t} - W_{R} \right) R + f_{1} R^{\dagger} \phi^{\dagger} \phi R - f_{2} [R^{\dagger} \phi \psi + R \phi^{\dagger} \psi^{\dagger}] \\ &- f_{3} [R^{\dagger} \phi \Delta + \Delta^{\dagger} \phi^{\dagger} R] - f_{4} [R^{\dagger} \sigma \psi + \psi^{\dagger} \sigma^{\dagger} R] \\ &+ \alpha_{\Delta} m_{\Delta}^{2} \Delta^{\dagger} \Delta + g_{1} \Delta^{\dagger} \phi^{\dagger} \phi \Delta - g_{2} [\Delta^{\dagger} \phi \psi + \Delta \phi^{\dagger} \psi^{\dagger}] \\ &+ \alpha_{\sigma} M_{\sigma}^{2} \sigma^{\dagger} \sigma + h_{1} \psi^{\dagger} \sigma^{\dagger} \sigma \psi - h_{2} [\sigma^{\dagger} \phi \phi + \sigma \phi^{\dagger} \phi^{\dagger}] \\ &- G_{R\sigma} [R^{\dagger} \phi^{\dagger} \sigma \psi + \psi^{\dagger} \sigma^{\dagger} \phi R] - G_{R\Delta} [R^{\dagger} \phi^{\dagger} \phi \Delta + \Delta^{\dagger} \phi^{\dagger} \phi R] \\ &- G_{\Delta\sigma} [\Delta^{\dagger} \phi^{\dagger} \sigma \psi + \psi^{\dagger} \sigma^{\dagger} \phi \Delta] \end{split}$$

A1(1260) FROM LATTICE QCD

"Heavier Universe"

