Recoil corrections in antikaon-deuteron scattering

V. Baru, E. Epelbaum, <u>M. Mai</u>, A. Rusetsky

MOTIVATION

- The $\bar{K}N$ system as a testing ground for low energy SU(3) meson-baryon dynamics
- Two fundamental quantities: $a_{I=0}$ and $a_{I=1}$

Two experiment(s):

- K⁻p: energy shift and width of the 1s level for kaonic hydrogen in SIDDHARTA¹@ DAΦNE
- K^-d : X-ray yield of kaonic deuterium derived. Important for:
 - ▶ planned upgrade to SIDDHARTA-2
 - ▶ Kaon implantation experiment @ J-PARC

¹Bazzi et al. (2011)

$\mathbf{EXPERIMENT} \leftrightarrow \mathbf{THEORY}$

- 1. "Unitarized ChPT" for meson-baryon scattering
 - a) Extract a_{K^-p} from modified Deser-type formula²
 - b) Construct a unitary amplitude from chiral potential³, adjust free parameters
- 2. Three-body Faddeev equation:
 - a) Assume NN and $\bar{K}N$ potential
 - b) Determine the $\bar{K}NN$ amplitude numerically

	$\bar{K}N$ system	$\bar{K}d$ system
1. UChPT	a_0, a_1 calculated \checkmark	A not addressed ${\bf X}$
2. Faddeev	potential assumed ${\bf X}$	A predicted ⁴ \checkmark

GOAL: Explicit relation btw. a₁, a₀ and A

²Meißner, Raha, Rusetsky(2004)

³Ikeda, Hyodo, Weise(2012) MM, Meißner(2012) Borasoy, Nißler, Weise(2006)... ⁴Shevchenko (2012)

MOTIVATION

- Multiple-scattering series \rightarrow poor convergence
- Resummation of the series $\hat{=}$ static approximation $(m_N \to \infty)$ to Faddeev Equations: Brueckner-type formula⁵

$$A_{st} = \langle |\Psi(r)|^2 \frac{4r\tilde{a}_0\tilde{a}_1 + r^2(\tilde{a}_0 + 3\tilde{a}_1)}{2r^2 + r(\tilde{a}_0 - \tilde{a}_1) - 2\tilde{a}_1\tilde{a}_0} \rangle_r$$
$$\bar{a} = (1+\xi)a, \ \xi = \frac{M_K}{m_N}$$

- ! Nucleon recoil corrections start with $\sqrt{\xi}\sim 0.7$
- ! But quantitatively:
 - \rightarrow at NLO: 15% effect in double scattering⁶
 - $\rightarrow\,$ numerical solutions of Faddeev eqn. suggest $\sim 15\%\,\,{\rm effect^7}$

 7 Gal (2008)

⁵Kamalov, Oset, Ramos (2001)

⁶Baru, Epelbaum, Rusetsky (2009)

RECOIL CORRECTIONS - IDEA

- $\bar{K}N$ scale is large $(\sim M_{\rho}) \rightarrow$ amplitude is parameterized by scattering lengths, effective radii, etc..
- NN potential is characterized by a soft scale ($\sim M_{\pi}$) \rightarrow take explicitly.

 \rightarrow Three types of interactions:

 \rightarrow In the static limit only (b) contributes \rightarrow rewrite the three-particle $\bar{K}NN$ propagator: $g = (g - g_{st}) + g_{st} := \Delta g + g_{st}$

$$\begin{aligned} A &= \tilde{a} + \tilde{a}^2 g + \tilde{a}^3 g^2 + \cdots \\ &= \left\{ \tilde{a} + \tilde{a}^2 g_{\mathsf{st}} + \cdots \right\} + \left\{ \tilde{a} + \tilde{a}^2 g_{\mathsf{st}} + \cdots \right\} (\Delta g) \left\{ \tilde{a} + \tilde{a}^2 g_{\mathsf{st}} + \cdots \right\} + \cdots \\ &= A_{\mathsf{st}} + A^{(1)} + A^{(2)} + \dots \end{aligned}$$

 \rightarrow include interactions of type (a) and (c)

RECOIL CORRECTIONS - IDEA

Full set of Feynman diagrams:

• Static part $(B_{\kappa} eckner_{\kappa} formula) \Rightarrow$ one diagram

$$A_{st} =$$

- One recoil insertions \Rightarrow three diagrams, 3×3 integrations $A^{(1)} = \underbrace{ \begin{array}{c} & & \\ & &$
- Two recoil insertions \Rightarrow six diagrams, 6×3 integrations

$$A^{(2)} = \underbrace{\begin{pmatrix} k \\ k \end{pmatrix}}_{k} + \dots$$

• Higher order corrections can be calculated analogously

computational challenge: rising number of integrals
one insertion is done, two is in preparation

IS THIS A GOOD APPROACH?

IF "YES", WHAT DOES IT PREDICT?

TEST OF THE FRAMEWORK

• Convergence of $A^{(n)}$ series in $\sqrt{\xi}$

 \hookrightarrow Sign for a good counting scheme of $A=A_{\mathsf{st}}+A^{(1)}+A^{(2)}+\dots$

- Uniform expansion⁸ of $A^{(n)}$:
 - Independent of the regularization procedure
 - Applicable to any Feynman diagram

Recipe:

- a) Identify the momentum scales, e.g. small scale λ , large scale Λ .
- b) Expand the integrand $f(\lambda, q, \Lambda)$ in the low-, high- and intermediate momentum regime, i.e $\lambda \sim q \ll \Lambda$, $\lambda \ll q \sim \Lambda$ and $\lambda \ll q \ll \Lambda$.

c)
$$\int_q f(\lambda, q, \Lambda) = \int_q f_l(\lambda, q, \Lambda) - \int_q f_i(\lambda, q, \Lambda) + \int_q f_h(\lambda, q, \Lambda).$$

⁸Beneke, Smirnov (1998) Baru, Epelbaum, Rusetsky (2009)

Expansion in powers of $\sqrt{\xi}$

• Isospin (NN interm. state) decomposition reveals cancellation pattern:

1) I=1 (S=1,L=1):

$$\longrightarrow$$
 cancels exactly at $\mathcal{O}(\sqrt{\xi})$
2) I=0 (S=1,L=0):
 \longrightarrow cancels exactly at $\mathcal{O}(\sqrt{\xi})$, if X=const.
 \longrightarrow cancels exactly at $\mathcal{O}(\sqrt{\xi})$, if X=const.
 \longrightarrow continuum w.f.
 \longrightarrow in general screened by

• NN-interaction parametrized (for convergence test!) by Hulthén potential ($\beta = 1.4 fm^{-1}$):

 $V_{NN}(p,q) = \lambda g(p)g(q) , \quad g(p) = \frac{1}{\beta^2 + p^2} , \quad \lambda = 32\pi m_N \beta \left(\beta + \gamma\right)^2$

Results of the expansion, I=1

• Expansion in $\tilde{\xi} := \xi/(1 + \xi/2)$ yields:

 $A_1 = \frac{8\pi}{(1+\xi/2)^2} \Big(c_{1,1}\tilde{\xi} + c_{1,1}\tilde{\xi}^2 + \dots + b_{1,1}\tilde{\xi}^{3/2} + b_{1,2}\tilde{\xi}^{5/2} + \dots \Big)$

 \rightsquigarrow Convergence after a few orders in $\tilde{\xi}^{1/2}$

Results of the expansion, I=0

• Expansion in $\tilde{\xi} := \xi/(1 + \xi/2)$ yields:

$$A_{0} = \frac{8\pi}{(1+\xi/2)^{2}} \left(c_{0,1}\tilde{\xi} + c_{0,1}\tilde{\xi}^{2} + \dots + b_{0,0}\tilde{\xi}^{1/2} + b_{0,1}\tilde{\xi}^{3/2} + \dots \right)$$
$$A_{c} = \frac{8\pi}{(1+\xi/2)^{2}} \left(C_{1}\tilde{\xi} + C_{2}\tilde{\xi}^{2} + \dots + B_{1}\tilde{\xi}^{1/2} + B_{2}\tilde{\xi}^{3/2} + \dots \right)$$

 \rightsquigarrow Convergence after a few orders in $\tilde{\xi}^{1/2}$

 \rightarrow LO sizable cancellations: $b_{0,0} = -0.047 + i0.154 \leftrightarrow \underline{B_1} = +0.047 - i0.132$

WHAT DOES IT PREDICT?

A. CHOICE OF NN POTENTIAL

- NN: Hulthén and PEST⁹ potential (short range physics)
- $\bar{K}N$: $(a_1 = -1.62 + i0.78 \text{ fm}, a_0 = +0.18 + i0.68 \text{ fm})^{10}$

Hulthén		PEST			
A_{st}	-1.492 + i1.187		A_{st}	-1.549 + i1.245	
$A^{(1)}$	$\begin{array}{c} A_1 \\ A_0 \\ A_c \\ \hline \text{Sum:} \end{array}$	$\begin{array}{r} -0.004 - i0.045 \\ -0.380 + i1.192 \\ +0.352 - i1.058 \\ \hline -0.031 + i0.090 \end{array}$	$A^{(1)}$	$\begin{array}{c} A_1 \\ A_0 \\ A_c \\ \hline \text{Sum:} \end{array}$	$\begin{array}{r} +0.002-i0.039\\ -0.401+i1.309\\ +0.356-i1.193\\ \hline -0.043+i0.076\end{array}$
$A_{st} + A^{(1)}$	-1.523+i1.277		$A_{\rm st} + A^{(1)}$	-1.593+i1.322	

• one insertion corrections are moderate for both NN potentials

⁹Zankel et al. (1983)

¹⁰Shevchenko (2012)

B. HIGHER ORDERS? (preliminary)

- Do we need the two, three, ... recoil insertions corrections?
- Formally they start at $(\xi^{1/2})^2$, $(\xi^{1/2})^3$, ...
- First estimation of two insertion corrections (Hulthén):

A_{st} [fm]		$A^{(1)}$ [fm]	$A^{(2)}$ [fm]		
	Ι		Ι		
	1	-0.00 - i0.04	11	+0.01 - i0.01	
	0	-0.03 + i0.13	00	+0.04 + i0.09	
			10	+0.01 - i0.00	
$\sum -1.49 + i1.19$	\sum	-0.03 + i0.09	\sum	+0.06 + 0.07	

 \rightsquigarrow Estimate two recoil corrections:

$$\xi^{1/2} Im(A_1^{(1)}) = -0.03 \text{ fm}, \ \xi^{1/2} Im(A_0^{(1)}) = 0.09 \text{ fm}$$

- \rightsquigarrow Estimate three recoil corrections: $\xi Im(A_0^{(1)}) = 0.07 \text{ fm} \approx 6\% A_{st}$
- \rightsquigarrow Further cancellations might reduce the size of recoil corrections

C. PREDICTION

- NN: PEST potential
- $\bar{K}N$: syntetic data around literature values, restricted by SIDDHARTA

 $(A_{st} + A^{(1)})$ depends strongly on the choice of $\bar{K}N$ s.l. $\sim \rightarrow$ \blacksquare precise exp. data on $\overline{K}d$ system can restrict a_0 and a_1 significantly!

- $\checkmark\,$ Analytic formulas for multiple insertion corrections
- ✓ Expansion of $A^{(1)}$ in powers of ξ converges
- $\checkmark\,$ Large cancellations at LO in one insertion corr.
- ✓ One insertion corr.: 7 8% of the static result \Rightarrow Good news!
- ✓ A is sensitive to a_0 and $a_1 \Rightarrow$ Good news for future experiment on kaonic deuterium

- ! Finite range/relativistic corrections
- ! Investigation of results for two insertion correction

... in progress

$$\begin{split} A^{a} = &\langle f(p,l)\Psi(r)e^{-i(\vec{p}+\vec{l}/2)\cdot\vec{r}}X_{a}(r,r',a_{1},a_{0})\Psi(r')e^{-i(\vec{p}+\vec{l}/2)\cdot\vec{r}'}\rangle_{p,l,r,r'} \\ A^{b} = &\langle f(p,l)\Psi(r)e^{-i(\vec{p}+\vec{l}/2)\cdot\vec{r}}X_{b}(r,r',a_{1},a_{0})\Psi(r')e^{-i(\vec{p}-\vec{l}/2)\cdot\vec{r}'}\rangle_{p,l,r,r'} \\ A^{c} = &\langle d(p,l)d(q,l)M_{NN}(p,q,l)\Psi(r)e^{-i(\vec{p}+\vec{l}/2)\cdot\vec{r}}X_{c}(r,r',a_{1},a_{0})\Psi(r')e^{-i(\vec{q}+\vec{l}/2)\cdot\vec{r}'}\rangle_{p,q,l,r,r'} \end{split}$$

$$d(p,l):=\tfrac{1}{l^2(1+\xi/2)+2\xi(p^2+m_N\epsilon_d)^2}\,,\quad f(p,l):=d(p,l)-\tfrac{1}{(1+\xi)l^2}$$