Constraints on the chiral unitary $\bar{K}N$ amplitude from $\pi\Sigma K^+$ photoproduction data

Maxim Mai, Ulf-G. Meißner

What is $\Lambda(1405)$ made of?

• Quark model genuine qqq state

- Capstick, Isgur (1986)
- $\rightarrow\,$ or even more exotic states: hybrids, active glue, \ldots
- Dynamically generated from coupled-channel effects

- \rightarrow unitarized coupled-channel amplitude from ChPT¹
- \Rightarrow two pole solution²...*accepted by PDG!*
- Lattice QCD
 - $\rightarrow \Lambda(1405)$ is dominated by a molecular $\bar{K}N$ state³

Dalitz, Tuan (1960!)

¹Kaiser, Siegel, Weise (1995) ... ²Oller, Meißner (2001) ... ³Hall et al. (2014)

Experimental situation

- Total cross sections on $K^- p \to K^- p, \bar{K}^0 n, ...$
 - \rightarrow old and not very restrictive⁴
- $\pi\Sigma$ mass distribution
 - \rightarrow multistep production: $K^- p \rightarrow (\pi^-) \Sigma^+(1660) \rightarrow (\pi^+) \Lambda(1405) \rightarrow \Sigma \pi$
 - \rightarrow low resolution

• SIDDHARTA experiment

- $\rightarrow \bar{K}H$ strong energy shift and width $\rightarrow a_{K^-p}$
- \rightarrow Plans for an upgrade to $\bar{K}D \rightarrow A_{Kd} \Rightarrow \text{extract } a_1, a_0 \text{ directly}^5$
- pp collisions
 - \rightarrow theoretical analysis very intricate
- $\pi\Sigma$ mass distribution
 - \rightarrow electro- and photoproduction: $\gamma p \rightarrow (K^+)\Lambda(1405) \rightarrow \pi \Sigma$
 - $\rightarrow~$ high statistics and good angular resolution
 - $\rightarrow J^P = \frac{1}{2}^-$ "confirmed"

CLAS (2012)

COSY (2008); HADES (2013)

Hemingway (1985)

1960s-1980s

Bazzi (2011)

⁴MM, Meißner (2012), Guo, Oller (2013)

⁵Kamalov, Oset, Ramos (2001); MM, Baru, ... (2014)

I. Meson-baryon scattering

Meson-baryon scattering - framework

• Bethe-Salpeter equation

- $\rightarrow~$ Bubble chain in s direction \rightarrow topologies are missing
- ⇒ scale dependence does not cancel out ⇒ model parameters → (Off-shell) T can be solved exactly, if $V \subset \text{local terms}^6$
- Kernel from NLO chiral potential (contact terms) $V = A_{WT}(q_1 + q_2) + A_{14}(q_1 \cdot q_2) + A_{57}[q_1, q_2] + A_M + A_{811}(q_2(q_1 \cdot p) + q_1(q_2 \cdot p))$ $\Rightarrow 14 \ low \ energy \ constants \Rightarrow \ model \ parameters$
- Fit to SIDDHARTA/thr. ratios/tot. cross sections
 - \rightarrow Off-shell effects are moderate⁶

onshell approximation \rightarrow performance \times 30

 \rightarrow Large scale fitting strategy

 $\sim 10\ 000\ starting\ values$

⁶MM, Meißner (2013)

Meson-baryon scattering - results

\Rightarrow 8 best fits are obtained:

Fit #	1	2	3	4	5	6	7	8
$\chi^2_{\rm d.o.f.}$	1.35	1.14	0.99	0.96	1.06	1.02	1.15	0.90

... with similar threshold values:

Meson-baryon scattering - results

... with similar cross sections:

Meson-baryon scattering - results

...but different pole positions:

II. CLAS data on $\gamma p \to K^+ \pi \Sigma$

Photoproduction - framework

• Gauge invariant photoproduction amplitude

• LO chiral potential and vector mesons exchange diagrams⁶

 \Rightarrow good fit with additional parameters: 15 per energy bin !

• Simple model

•
$$\mathcal{M}_j(W, M_{\pi\Sigma}) = C_i(W) \cdot G_i(M_{\pi\Sigma}) \cdot T_{i \to j}^{on}(M_{\pi\Sigma})$$

• no gauge invariance, parameters are non-physical

 \rightarrow global fit is meaningless \rightarrow microscopic features of the spectrum not accessible

• flexible enough for the CLAS data⁷

 \rightarrow less free parameters (15 \mapsto 10) \rightarrow conservative test for the hadronic solutions

⁶Nakamura, Jido (2014)

e.g. Oset, Roca (2013)

Photoproduction - best fit

• But not every solution leads to a good fit, e.g. sol. #6

Results - comparison

• Test of hadronic solutions:

Fit #	1	2	3	4	5	6	7	8
$\chi^2_{\rm d.o.f.}$ (hadr.)	1.35	1.14	0.99	0.96	1.06	1.02	1.15	0.90
$\chi^2_{\rm p.p.}$ (CLAS)	3.18	1.94	2.56	1.77	1.90	6.11	2.93	3.14

- #2, #4 and #5 are good fits
- #5 disagrees qualitatively with Hemingway $(K^- p \to \Sigma^+ \pi^- \pi^+ \pi^-)$:

Results - conclusion

 \Rightarrow After comparison with CLAS and Hemingway two solutions remain:

 \rightarrow Different ansatz for the hadronic part, but similar poles as Oset and Roca \Rightarrow universal feature, demanded by CLAS data!

Summary and Outlook

DONE

- The <u>NLO</u> chiral unitary $\bar{K}N$ amplitude used to analyze hadronic data
- 8 solutions are found in the onshell approximation:

 \rightarrow the position of the narrow pole is quite certain \rightarrow broad pole has large systematic uncertainty

• Photoproduction amplitude constructed from the hadronic part:

 \rightarrow very flexible ansatz ... conservative test \rightarrow 5 solutions disagree with the CLAS data, 2 remain after all tests

TO DO

• Better ansatz is required for the photoproduction part

 \rightarrow physical parameters

 \rightarrow microscopic features (electro vs. photoproduction?)

 \rightarrow direct extraction of the $\bar{K}N$ amplitude

