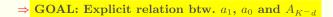
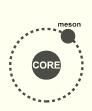
Recoil corrections in antikaon-deuteron scattering

V. Baru, E. Epelbaum, M. Mai, A. Rusetsky




MOTIVATION

- The $\bar{K}N$ system as a testing ground for low energy SU(3) meson-baryon dynamics
- Two fundamental quantities: $a_{I=0}$ and $a_{I=1}$

⇒Two experiments

- 1) K^-p : energy shift and width of the 1s level for kaonic hydrogen in SIDDHARTA¹ @ DA Φ NE
 - related to $a_{K^{-p}}$ via modified Deser-type formula²
- 2) K^-d : X-ray yield of kaonic deuterium derived. Important for:
 - ▶ planned upgrade to SIDDHARTA-2
 - Kaon implantation experiment @ J-PARC

¹Bazzi et al.(2011)

²Meißner, Raha, Rusetsky(2004)

MOTIVATION

1. "Unitarized ChPT" for meson-baryon scattering

 \rightarrow adjust free parameters to the scattering data on $\bar{K}N$ system¹ $\Rightarrow \bar{K}d$ not addressed!

2. Three-body Faddeev equation:

 \rightarrow determine the $\bar{K}NN$ amplitude numerically² \Rightarrow knowledge of NN and $\bar{K}N$ potential required!

3. Multiple-scattering series:

 \rightarrow poor convergence \Rightarrow resummation³ in the static limit $(m_N \rightarrow \infty)$

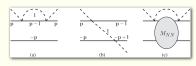
$$A_{st} \sim \int d^3r \left(|\Psi(r)|^2 \frac{4r\tilde{a}_0\tilde{a}_1 + r^2(\tilde{a}_0 + 3\tilde{a}_1)}{2r^2 + r(\tilde{a}_0 - \tilde{a}_1) - 2\tilde{a}_1\tilde{a}_0} \right) \quad \text{for } \tilde{a} = (1 + \xi)a \,, \,\, \xi = \frac{M_K}{m_N}$$

→ What are the nucleon recoil corrections?

 \Rightarrow in principle they start with $\sqrt{\xi} \approx 0.7$

 \Rightarrow numerical solutions of Faddeev eqn. suggest $\sim 15\%$ effect⁴

 $^{^{1}}$ Ikeda, Hyodo, Weise(2012) MM, Meißner(2012)...


 $^{^2}$ Shevchenko (2012) ...

³Kamalov, Oset, Ramos (2001)

⁴Gal (2008)

Recoil corrections - idea

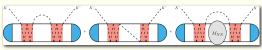
- $\bar{K}N$ scale is large $(\sim M_{\rho}) \rightarrow$ effective range expansion
- NN potential is characterized by a soft scale $(\sim M_{\pi}) \to \text{taken}$ explicitly
 - ⇒Three types of interactions:

- In the static limit only (b) contributes
 - \rightarrow rewrite the $\bar{K}NN$ propagator: $g = (g g_{st}) + g_{st} := \Delta g + g_{st}$

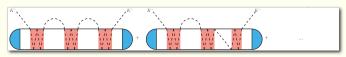
$$A = \tilde{a} + \tilde{a}^{2}g + \tilde{a}^{3}g^{2} + \cdots$$

$$= \{\tilde{a} + \tilde{a}^{2}g_{st} + \cdots\} + \{\tilde{a} + \tilde{a}^{2}g_{st} + \cdots\} (\Delta g) \{\tilde{a} + \tilde{a}^{2}g_{st} + \cdots\} + \cdots$$

$$= A_{st} + A^{(1)} + A^{(2)} + \dots$$


 \rightarrow include interactions of type (a) and (c)

Recoil corrections - idea


- Full set of Feynman diagrams:
 - \rightarrow No recoil insertions $A_{st} \Rightarrow$ one diagram

 \rightarrow One recoil insertion $A^{(1)} \Rightarrow$ three diagrams

 $\rightarrow\,$ Two recoil insertions $A^{(2)}\Rightarrow {\rm six}$ diagrams

- → ...
- \Rightarrow computational challenge: rising number of integrals
- ⇒ one insertion is done, two is in preparation

IS THIS A GOOD APPROACH?

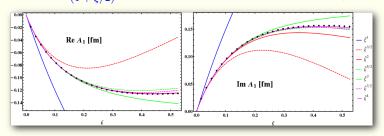
IF "YES", WHAT DOES IT PREDICT?

Test of the framework - results

- Convergence of $A^{(n)}$ series in powers of $\sqrt{\xi}$
 - \rightarrow sign for a good counting scheme of $A = A_{st} + A^{(1)} + A^{(2)} + ...$
 - \rightarrow uniform expansion⁵ of $A^{(n)}$
 - ightarrow independent of the regularization procedure ightarrow applicable to any Feynman diagram
 - \rightarrow isospin decomposition (NN in term. state) reveals additional cancellation pattern:
 - 1) I=1 (S=1, L=1): cancels exactly at $\mathcal{O}(\sqrt{\xi})$
 - 2) I=0 (S=1, L=0): cancels exactly at $\mathcal{O}(\sqrt{\xi})$, if $\overline{\mathbb{W}}$ is constant \rightarrow orthogonality of bound state and continuum w.f.
 - \rightarrow assume for now Hulthén potential ($\beta = 1.4 fm^{-1}$) for the NN interaction:

$$V_{NN}(p,q) = \lambda g(p)g(q)\,,\quad g(p) = \frac{1}{\beta^2 + p^2}\,,\quad \lambda = 32\pi m_N\beta\,(\beta + \gamma)^2$$

 $^{^{5}}$ Beneke, Smirnov (1998) Baru, Epelbaum, Rusetsky (2009)


Test of the framework - results

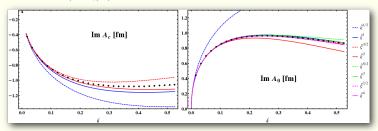
• Expansion in $\tilde{\xi} := \xi/(1+\xi/2)$ yields:

$$A_{1} = \frac{8\pi}{(1+\xi/2)^{2}} \left(c_{1,1}\tilde{\xi} + c_{1,1}\tilde{\xi}^{2} + \dots + b_{1,1}\tilde{\xi}^{3/2} + b_{1,2}\tilde{\xi}^{5/2} + \dots \right)$$

$$A_{0} = \frac{8\pi}{(1+\xi/2)^{2}} \left(c_{0,1}\tilde{\xi} + c_{0,1}\tilde{\xi}^{2} + \dots + b_{0,0}\tilde{\xi}^{1/2} + b_{0,1}\tilde{\xi}^{3/2} + \dots \right)$$

$$A_{c} = \frac{8\pi}{(1+\xi/2)^{2}} \left(C_{1}\tilde{\xi} + C_{2}\tilde{\xi}^{2} + \dots + B_{1}\tilde{\xi}^{1/2} + B_{2}\tilde{\xi}^{3/2} + \dots \right)$$

- \Rightarrow convergence after a few orders in $\tilde{\xi}^{1/2}$
- \Rightarrow LO sizable cancellations: $b_{0,0} = -0.047 + i0.154 \leftrightarrow B_1 = +0.047 i0.132$


Test of the framework - results

• Expansion in $\tilde{\xi} := \xi/(1+\xi/2)$ yields:

$$A_{1} = \frac{8\pi}{(1+\xi/2)^{2}} \left(c_{1,1}\tilde{\xi} + c_{1,1}\tilde{\xi}^{2} + \dots + b_{1,1}\tilde{\xi}^{3/2} + b_{1,2}\tilde{\xi}^{5/2} + \dots \right)$$

$$A_{0} = \frac{8\pi}{(1+\xi/2)^{2}} \left(c_{0,1}\tilde{\xi} + c_{0,1}\tilde{\xi}^{2} + \dots + b_{0,0}\tilde{\xi}^{1/2} + b_{0,1}\tilde{\xi}^{3/2} + \dots \right)$$

$$A_{c} = \frac{8\pi}{(1+\xi/2)^{2}} \left(C_{1}\tilde{\xi} + C_{2}\tilde{\xi}^{2} + \dots + B_{1}\tilde{\xi}^{1/2} + B_{2}\tilde{\xi}^{3/2} + \dots \right)$$

- \Rightarrow convergence after a few orders in $\tilde{\xi}^{1/2}$
- \Rightarrow LO sizable cancellations: $b_{0,0} = -0.047 + i0.154 \leftrightarrow B_1 = +0.047 i0.132$

IS THIS A GOOD APPROACH? ✓

WHAT DOES IT PREDICT?

I. Choice of the NN potential

- NN: Hulthén and PEST⁶ potential (short range physics)
- $\bar{K}N$: $a_1 = -1.62 + i0.78$ fm, $a_0 = +0.18 + i0.68$ fm

Hulthén			PEST		
A_{st}	-1.492 + i1.187		A_{st}	-1.549 + i1.245	
$A^{(1)}$	$ \begin{array}{c} A_1 \\ A_0 \\ A_c \\ \hline \text{Sum:} \end{array} $	$\begin{array}{c} -0.004 - i0.045 \\ -0.380 + i1.192 \\ +0.352 - i1.058 \\ -0.031 + i0.090 \end{array}$	$A^{(1)}$	$ \begin{array}{c} A_1 \\ A_0 \\ A_c \\ \hline \text{Sum:} \end{array} $	$ \begin{array}{c} +0.002-i0.039 \\ -0.401+i1.309 \\ +0.356-i1.193 \\ -0.043+i0.076 \end{array}$
$A_{\rm st} + A^{(1)}$	-1.523+i1.277		$A_{\rm st} + A^{(1)}$	-1.593 + i1.322	

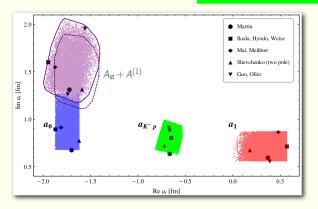
⇒ one insertion corrections are moderate for both NN potentials

⁶Zankel et al. (1983)

II. Higher orders? (preliminary)

- Do we need the two, three, ... recoil insertions corrections?
- Formally they start at $(\xi^{1/2})^2$, $(\xi^{1/2})^3$, ...
- First estimation of two insertion corrections (for Hulthén):

$A_{\rm st} \ [{\rm fm}]$	$A^{(1)}$ [fm]		$A^{(2)}$ [fm]	
	I		I	
	1	-0.00 - i0.04	11	+0.01 - i0.01
	0	-0.03 + i0.13	00	+0.04+i0.09
			10	+0.01 - i0.00
\sum -1.49 + <i>i</i> 1.19	Σ	-0.03 + i0.09	Σ	+0.06+0.07


→ Estimate two recoil corrections:

$$\xi^{1/2} Im(A_1^{(1)}) = -0.03 \text{ fm}, \ \xi^{1/2} Im(A_0^{(1)}) = 0.09 \text{ fm}$$

- $\rightarrow\,$ Estimate three recoil corrections: $\xi Im(A_0^{(1)})=0.07~{\rm fm}\approx 6\% A_{\rm st}$
- → Further cancellations might reduce the size of recoil corrections

III. Syntetic data

- NN: PEST potential
- $\bar{K}N$: syntetic data around literature values, restricted by SIDDHARTA

 $\rightarrow (A_{\rm st} + A^{(1)})$ depends strongly on the choice of $\bar{K}N$ s.l.

 \Rightarrow precise exp. data on $\bar{K}d$ system can restrict a_0 and a_1 significantly!

Conclusion

- ✓ Analytic formulas for multiple insertion corrections
- \checkmark Expansion of $A^{(1)}$ in powers of ξ converges
- \checkmark Large cancellations at LO in one insertion corr.
- ✓ One insertion corr.: 7 8% of the static result \Rightarrow Good news!
- ✓ A is sensitive to a_0 and $a_1 \Rightarrow \text{Good news}$ for future experiment on kaonic deuterium

- ! Finite range/relativistic corrections
- ! Investigation of results for two insertion correction

... in progress